Paul P. Mealing

Check out my book, ELVENE. Available as e-book and as paperback (print on demand, POD). Also this promotional Q&A on-line.

Thursday 31 August 2023

Can relativity theory be reconciled with common sense?

 You might think I write enough posts on Einstein’s theories of relativity, including the last one, but this one is less esoteric. It arose from a question I answered on Quora. Like a lot of questions on Quora, it’s provocative and you wonder whether the questioner is serious or not.
 
Before I came up with the title, I rejected 2 others: Relativity theory for dummies (which seemed patronising) and Relativity explained without equations or twins (which is better). But I settled on the one above, because it contains a thought experiment, which does exactly that. It’s a thought experiment I’ve considered numerous times in the past, but never expressed in writing.
 
I feel that the post also deals with some misconceptions: that SR arose from the failure of the Michelson-Morley experiments to measure the aether, and that GR has no relationship to Newton’s theory of gravity.
 
If the theories of relativity are so "revolutionary," why are they so incompatible with the 'real' world? In others(sic), why are the theories based on multiple assumptions in mathematics rather than the physical world?
 
You got one thing right, which is ‘theories’ plural – there is the special theory (SR) and the general theory (GR). As for ‘multiple assumptions in mathematics’, there was really only one fundamental assumption and that determined the mathematical formulation of both theories, but SR in particular (GR followed 10 years later).
 
The fundamental assumption was that the speed of light, c, is the same for all observers irrespective of their frame of reference, so not dependent on how fast they’re travelling relative to someone else, or, more importantly, the source of the light. This is completely counter-intuitive but is true based on all observations, including from the far reaches of the Universe. Imagine if, as per our common sense view of the world, that light travelled slower from a source receding from us and faster from a source approaching us.
 
That means that observing a galaxy far far away, the spiral arm travelling away from us would become increasingly out-of-sync with the arm travelling towards us. It’s hard to come up with a more graphic illustration that SR is true. The alternative is that the galaxy arms are travelling through an aether that permeates all of space. This was the accepted view before Einstein’s ‘revolutionary’ idea.
 
True: Einstein’s idea was premised on mathematics (not observation), but the mathematics of Maxwell’s equations, which ‘predicts’ the constant speed of light and provides a value for it. As someone said (Heinrich Hertz): “we get more out of [these equations] than was originally put into them.”
 

But SR didn’t take into account gravity, which unlike the fictitious aether, does permeate the whole universe, so Einstein developed GR. This was a mathematical theory, so not based on empirical observations, but it had to satisfy 3 criteria, established by Einstein at the outset.
 
1)    It had to satisfy the conservation laws of energy, momentum and angular momentum
2)    It had to allow for the equivalence of gravitational and inertial mass.
3)    It had to reduce mathematically to Newton’s formula when relativistic effects were negligible.
 
Many people overlook the last one, when they claim that Einstein’s theory made Newton’s theory obsolete, when in fact, it extended it into realms it couldn’t compute. Likewise, Einstein’s theory also has limitations, yet to be resolved. Observations that confirmed the theory followed its mathematical formulation, which was probably a first in physics.

Note that the curvature of spacetime is a consequence of Einstein’s theory and not a presupposition, and was one of the earliest observational confirmations of said theory.
 
 
Source: The Road to Relativity; The History and Meaning of Einstein’s “The Foundation of General Relativity” (the original title of his paper) by Hanoch Gutfreund and Jurgen Renn.
 

Addendum: I elaborate on the relationship between Newton's and Einstein's theories on another post, in the context of How does science work?

Friday 18 August 2023

The fabric of the Universe

Brian Greene wrote an excellent book with a similar title (The Fabric of the Cosmos) which I briefly touched on here. Basically, it’s space and time, and the discipline of physics can’t avoid it. In fact, if you add mass and charge, you’ve got the whole gamut that we’re aware of. I know there’s the standard model along with dark energy and dark matter, but as someone said, if you throw everything into a black hole, the only thing you know about it is its mass, charge and angular momentum. Which is why they say, ‘a black hole has no hair.’ That was before Stephen Hawking applied the laws of thermodynamics and quantum mechanics and came up with Hawking radiation, but I’ve gone off-track, so I’ll come back to the topic-at-hand.
 
I like to tell people that I read a lot of books by people a lot smarter than me, and one of those books that I keep returning to is The Constants of Nature by John D Barrow. He makes a very compelling case that the only Universe that could be both stable and predictable enough to support complex life would be one with 3 dimensions of space and 1 of time. A 2-dimensional universe means that any animal with a digestive tract (from mouth to anus) would fall apart. Only a 3-dimensional universe allows planets to maintain orbits for millions of years. As Barrow points out in his aforementioned tome, Einstein’s friend, Paul Ehrenfest (1890-1933) was able to demonstrate this mathematically. It’s the inverse square law of gravity that keeps planets in orbit and that’s a direct consequence of everything happening in 3 dimensions. Interestingly, Kant thought it was the other way around – that 3 dimensions were a consequence of Newton’s universal law of gravity being an inverse square law. Mind you, Kant thought that both space and time were a priori concepts that only exist in the mind:
 
But this space and this time, and with them all appearances, are not in themselves things; they are nothing but representations and cannot exist outside our minds.
 
And this gets to the nub of the topic alluded to in the title of this post: are space and time ‘things’ that are fundamental to everything else we observe?
 
I’ll start with space, because, believe it or not, there is an argument among physicists that space is not an entity per se, but just dimensions between bodies that we measure. I’m going to leave aside, for the time being, that said ‘measurements’ can vary from observer to observer, as per Einstein’s special theory of relativity (SR).
 
This argument arises because we know that the Universe is expanding (by measuring the Doppler-shift of stars); but does space itself expand or is it just objects moving apart? In another post, I referenced a paper by Tamara M. Davis and Charles H. Lineweaver from UNSW (Expanding Confusion: Common Misconceptions of Cosmological Horizons and the Superluminal Expansion of the Universe), which I think puts an end to this argument, when they explain the difference between an SR and GR Doppler shift interpretation of an expanding universe.
 
The general relativistic interpretation of the expansion interprets cosmological redshifts as an indication of velocity since the proper distance between comoving objects increases. However, the velocity is due to the rate of expansion of space, not movement through space, and therefore cannot be calculated with the special relativistic Doppler shift formula. (My emphasis)
 
I’m now going to use a sleight-of-hand and attempt a description of GR (general theory of relativity) without gravity, based on my conclusion from their exposition.
 
The Universe has a horizon that’s directly analogous to the horizon one observes at sea, because it ‘moves’ as the observer moves. In other words, other hypothetical ‘observers’ in other parts of the Universe would observe a different horizon to us, including hypothetical observers who are ‘over-the-horizon’ relative to us.
 
But the horizon of the Universe is a direct consequence of bodies (or space) moving faster-than-light (FTL) over the horizon, as expounded upon in detail in Davis’s and Lineweaver’s paper. But here’s the thing: if you were an observer on one of these bodies moving FTL relative to Earth, the speed of light would still be c. How is that possible? My answer is that the light travels at c relative to the ‘space’* (in which it’s observed), but the space itself can travel faster than light.
 
There are, of course, other horizons in the Universe, which are event horizons of black holes. Now, you have the same dilemma at these horizons as you do at the Universe’s horizon. According to an external observer, time appears to ‘stop’ at the event horizon, because the light emitted by an object can’t reach us. However, for an observer at the event horizon, the speed of light is still c, and if the black hole is big enough, it’s believed (obviously no one can know) that someone could cross the event horizon without knowing they had. But what if it’s spacetime that crosses the event horizon? Then both the external observer’s perception and the comoving observer’s perception would be no different if the latter was at the horizon of the entire universe.
 
But what happens to time? Well, if you measure time by the frequency of light being emitted from an object at any of these horizons, it gets Doppler-shifted to zero, so time ‘stops’ for the ‘local’ observer (on Earth) but not for the observer at the horizon.
 
So far, I’ve avoided talking about quantum mechanics (QM), but something curious happens when you apply QM to cosmology: time disappears. According to Paul Davies in The Goldilocks Enigma: ‘…vanishing of time for the entire universe becomes very explicit in quantum cosmology, where the time variable simply drops out of the quantum description.’ This is consistent with Freeman Dyson’s argument that QM can only describe the future. Thus, if you apply a description of the future to the entire cosmos, there would be no time.
 
 
* Note: you can still apply SR within that ‘space’.

 

Addendum: I've since learned that in 1958, David Finkelstein (a postdoc with the Stevens Institute of Technology in Hoboken, New Jersey) wrote an article in Physical Review that gave the same explanation for how time appears different to different observers of a black hole, as I do above. It immediately grabbed the attention (and approval) of Oppenheimer, Wheeler and Penrose (among others), who had struggled to resolve this paradox. (Ref. Black Holes And Time Warps; Einstein's Outrageous Legacy, Kip S. Thorne, 1994)
 

Wednesday 7 June 2023

Consciousness, free will, determinism, chaos theory – all connected

 I’ve said many times that philosophy is all about argument. And if you’re serious about philosophy, you want to be challenged. And if you want to be challenged you should seek out people who are both smarter and more knowledgeable than you. And, in my case, Sabine Hossenfelder fits the bill.
 
When I read people like Sabine, and others whom I interact with on Quora, I’m aware of how limited my knowledge is. I don’t even have a university degree, though I’ve attempted a number of times. I’ve spent my whole life in the company of people smarter than me, including at school. Believe it or not, I still have occasional contact with them, through social media and school reunions. I grew up in a small rural town, where the people you went to school with feel like siblings.
 
Likewise, in my professional life, I have always encountered people cleverer than me – it provides perspective.
 
In her book, Existential Physics; A Scientist’s Guide to Life’s Biggest Questions, Sabine interviews people who are possibly even smarter than she is, and I sometimes found their conversations difficult to follow. To be fair to Sabine, she also sought out people who have different philosophical views to her, and also have the intellect to match her.
 
I’m telling you all this to put things in perspective. Sabine has her prejudices like everyone else, some of which she defends better than others. I concede that my views are probably more simplistic than hers, and I support my challenges with examples that are hopefully easy to follow. Our points of disagreement can be distilled down to a few pertinent topics, which are time, consciousness, free will and chaos. Not surprisingly, they are all related – what you believe about one, affects what you believe about the others.
 
Sabine is very strict about what constitutes a scientific theory. She argues that so-called theories like the multiverse have ‘no explanatory power’, because they can’t be verified or rejected by evidence, and she calls them ‘ascientific’. She’s critical of popularisers like Brian Cox who tell us that there could be an infinite number of ‘you(s)’ in an infinite multiverse. She distinguishes between beliefs and knowledge, which is a point I’ve made myself. Having said that, I’ve also argued that beliefs matter in science. She puts all interpretations of quantum mechanics (QM) in this category. She keeps emphasising that it doesn’t mean they are wrong, but they are ‘ascientific’. It’s part of the distinction that I make between philosophy and science, and why I perceive science as having a dialectical relationship with philosophy.
 
I’ll start with time, as Sabine does, because it affects everything else. In fact, the first chapter in her book is titled, Does The Past Still Exist? Basically, she argues for Einstein’s ‘block universe’ model of time, but it’s her conclusion that ‘now is an illusion’ that is probably the most contentious. This critique will cite a lot of her declarations, so I will start with her description of the block universe:
 
The idea that the past and future exist in the same way as the present is compatible with all we currently know.
 
This viewpoint arises from the fact that, according to relativity theory, simultaneity is completely observer-dependent. I’ve discussed this before, whereby I argue that for an observer who is moving relative to a source, or stationary relative to a moving source, like the observer who is standing on the platform of Einstein’s original thought experiment, while a train goes past, knows this because of the Doppler effect. In other words, an observer who doesn’t see a Doppler effect is in a privileged position, because they are in the same frame of reference as the source of the signal. This is why we know the Universe is expanding with respect to us, and why we can work out our movement with respect to the CMBR (cosmic microwave background radiation), hence to the overall universe (just think about that).
 
Sabine clinches her argument by drawing a spacetime diagram, where 2 independent observers moving away from each other, observe a pulsar with 2 different simultaneities. One, who is traveling towards the pulsar, sees the pulsar simultaneously with someone’s birth on Earth, while the one travelling away from the pulsar sees it simultaneously with the same person’s death. This is her slam-dunk argument that ‘now’ is an illusion, if it can produce such a dramatic contradiction.
 
However, I drew up my own spacetime diagram of the exact same scenario, where no one is travelling relative to anyone one else, yet create the same apparent contradiction.


 My diagram follows the convention in that the horizontal axis represents space (all 3 dimensions) and the vertical axis represents time. So the 4 dotted lines represent 4 observers who are ‘stationary’ but ‘travelling through time’ (vertically). As per convention, light and other signals are represented as diagonal lines of 45 degrees, as they are travelling through both space and time, and nothing can travel faster than them. So they also represent the ‘edge’ of their light cones.
 
So notice that observer A sees the birth of Albert when he sees the pulsar and observer B sees the death of Albert when he sees the pulsar, which is exactly the same as Sabine’s scenario, with no relativity theory required. Albert, by the way, for the sake of scalability, must have lived for thousands of years, so he might be a tree or a robot.
 
But I’ve also added 2 other observers, C and D, who see the pulsar before Albert is born and after Albert dies respectively. But, of course, there’s no contradiction, because it’s completely dependent on how far away they are from the sources of the signals (the pulsar and Earth).
 
This is Sabine’s perspective:
 
Once you agree that anything exists now elsewhere, even though you see it only later, you are forced to accept that everything in the universe exists now. (Her emphasis.)
 
I actually find this statement illogical. If you take it to its logical conclusion, then the Big Bang exists now and so does everything in the universe that’s yet to happen. If you look at the first quote I cited, she effectively argues that the past and future exist alongside the present.
 
One of the points she makes is that, for events with causal relationships, all observers see the events happening in the same sequence. The scenario where different observers see different sequences of events have no causal relationships. But this begs a question: what makes causal events exceptional? What’s more, this is fundamental, because the whole of physics is premised on the principle of causality. In addition, I fail to see how you can have causality without time. In fact, causality is governed by the constant speed of light – it’s literally what stops everything from happening at once.
 
Einstein also believed in the block universe, and like Sabine, he argued that, as a consequence, there is no free will. Sabine is adamant that both ‘now’ and ‘free will’ are illusions. She argues that the now we all experience is a consequence of memory. She quotes Carnap that our experience of ‘past, present and future can be described and explained by psychology’ – a point also made by Paul Davies. Basically, she argues that what separates our experience of now from the reality of no-now (my expression, not hers) is our memory.
 
Whereas, I think she has it back-to-front, because, as I’ve pointed out before, without memory, we wouldn’t know we are conscious. Our brains are effectively a storage device that allows us to have a continuity of self through time, otherwise we would not even be aware that we exist. Memory doesn’t create the sense of now; it records it just like a photograph does. The photograph is evidence that the present becomes the past as soon as it happens. And our thoughts become memories as soon as they happen, otherwise we wouldn’t know we think.
 
Sabine spends an entire chapter on free will, where she persistently iterates variations on the following mantra:
 
The future is fixed except for occasional quantum events that we cannot influence.

 
But she acknowledges that while the future is ‘fixed’, it’s not predictable. And this brings us to chaos theory. Sabine discusses chaos late in the book and not in relation to free will. She explicates what she calls the ‘real butterfly effect’.
 
The real butterfly effect… means that even arbitrarily precise initial data allow predictions for only a finite amount of time. A system with this behaviour would be deterministic and yet unpredictable.
 
Now, if deterministic means everything physically manifest has a causal relationship with something prior, then I agree with her. If she means that therefore ‘the future is fixed’, I’m not so sure, and I’ll explain why. By specifying ‘physically manifest’, I’m excluding thoughts and computer algorithms that can have an effect on something physical, whereas the cause is not so easily determined. For example, In the case of the algorithm, does it go back to the coder who wrote it?
 
My go-to example for chaos is tossing coins, because it’s so easy to demonstrate and it’s linked to probability theory, as well as being the very essence of a random event. One of the key, if not definitive, features of a chaotic phenomenon is that, if you were to rerun it, you’d get a different result, and that’s fundamental to probability theory – every coin toss is independent of any previous toss – they are causally independent. Unrepeatability is common among chaotic systems (like the weather). Even the Earth and Moon were created from a chaotic event.
 
I recently read another book called Quantum Physics Made Me Do It by Jeremie Harris, who argues that tossing a coin is not random – in fact, he’s very confident about it. He’s not alone. Mark John Fernee, a physicist with Qld Uni, in a personal exchange on Quora argued that, in principle, it should be possible to devise a robot to perform perfectly predictable tosses every time, like a tennis ball launcher. But, as another Quora contributor and physicist, Richard Muller, pointed out: it’s not dependent on the throw but the surface it lands on. Marcus du Sautoy makes the same point about throwing dice and provides evidence to support it.
 
Getting back to Sabine. She doesn’t discuss tossing coins, but she might think that the ‘imprecise initial data’ is the actual act of tossing, and after that the outcome is determined, even if can’t be predicted. However, the deterministic chain is broken as soon as it hits a surface.
 
Just before she gets to chaos theory, she talks about computability, with respect to Godel’s Theorem and a discussion she had with Roger Penrose (included in the book), where she says:
 
The current laws of nature are computable, except for that random element from quantum mechanics.
 
Now, I’m quoting this out of context, because she then argues that if they were uncomputable, they open the door to unpredictability.
 
My point is that the laws of nature are uncomputable because of chaos theory, and I cite Ian Stewart’s book, Does God Play Dice? In fact, Stewart even wonders if QM could be explained using chaos (I don’t think so). Chaos theory has mathematical roots, because not only are the ‘initial conditions’ of a chaotic event impossible to measure, they are impossible to compute – you have to calculate to infinite decimal places. And this is why I disagree with Sabine that the ‘future is fixed’.
 
It's impossible to discuss everything in a 223 page book on a blog post, but there is one other topic she raises where we disagree, and that’s the Mary’s Room thought experiment. As she explains it was proposed by philosopher, Frank Jackson, in 1982, but she also claims that he abandoned his own argument. After describing the experiment (refer this video, if you’re not familiar with it), she says:
 
The flaw in this argument is that it confuses knowledge about the perception of colour with the actual perception of it.
 
Whereas, I thought the scenario actually delineated the difference – that perception of colour is not the same as knowledge. A person who was severely colour-blind might never have experienced the colour red (the specified colour in the thought experiment) but they could be told what objects might be red. It’s well known that some animals are colour-blind compared to us and some animals specifically can’t discern red. Colour is totally a subjective experience. But I think the Mary’s room thought experiment distinguishes the difference between human perception and AI. An AI can be designed to delineate colours by wavelength, but it would not experience colour the way we do. I wrote a separate post on this.
 
Sabine gives the impression that she thinks consciousness is a non-issue. She talks about the brain like it’s a computer.
 
You feel you have free will, but… really, you’re running a sophisticated computation on your neural processor.
 
Now, many people, including most scientists, think that, because our brains are just like computers, then it’s only a matter of time before AI also shows signs of consciousness. Sabine doesn’t make this connection, even when she talks about AI. Nevertheless, she discusses one of the leading theories of neuroscience (IIT, Information Integration Theory), based on calculating the amount of information processed, which gives a number called phi (Φ). I came across this when I did an online course on consciousness through New Scientist, during COVID lockdown. According to the theory, this number provides a ‘measure of consciousness’, which suggests that it could also be used with AI, though Sabine doesn’t pursue that possibility.
 
Instead, Sabine cites an interview in New Scientist with Daniel Bor from the University of Cambridge: “Phi should decrease when you go to sleep or are sedated… but work in Bor’s laboratory has shown that it doesn’t.”
 
Sabine’s own view:
 
Personally, I am highly skeptical that any measure consisting of a single number will ever adequately represent something as complex as human consciousness.
 
Sabine discusses consciousness at length, especially following her interview with Penrose, and she gives one of the best arguments against panpsychism I’ve read. Her interview with Penrose, along with a discussion on Godel’s Theorem, which is another topic, discusses whether consciousness is computable or not. I don’t think it is and I don’t think it’s algorithmic.
 
She makes a very strong argument for reductionism: that the properties we observe of a system can be understood from studying the properties of its underlying parts. In other words, that emergent properties can be understood in terms of the properties that it emerges from. And this includes consciousness. I’m one of those who really thinks that consciousness is the exception. Thoughts can cause actions, which is known as ‘agency’.
 
I don’t claim to understand consciousness, but I’m not averse to the idea that it could exist outside the Universe – that it’s something we tap into. This is completely ascientific, to borrow from Sabine. As I said, our brains are storage devices and sometimes they let us down, and, without which, we wouldn’t even know we are conscious. I don’t believe in a soul. I think the continuity of the self is a function of memory – just read The Lost Mariner chapter in Oliver Sacks’ book, The Man Who Mistook His Wife For A Hat. It’s about a man suffering from retrograde amnesia, so his life is stuck in the past because he’s unable to create new memories.
 
At the end of her book, Sabine surprises us by talking about religion, and how she agrees with Stephen Jay Gould ‘that religion and science are two “nonoverlapping magisteria!”. She makes the point that a lot of scientists have religious beliefs but won’t discuss them in public because it’s taboo.
 
I don’t doubt that Sabine has answers to all my challenges.
 
There is one more thing: Sabine talks about an epiphany, following her introduction to physics in middle school, which started in frustration.
 
Wasn’t there some minimal set of equations, I wanted to know, from which all the rest could be derived?
 
When the principle of least action was introduced, it was a revelation: there was indeed a procedure to arrive at all these equations! Why hadn’t anybody told me?

 
The principle of least action is one concept common to both the general theory of relativity and quantum mechanics. It’s arguably the most fundamental principle in physics. And yes, I posted on that too.

 

Wednesday 31 May 2023

Immortality; from the Pharaohs to cryonics

 I thought the term was cryogenics, but a feature article in the Weekend Australian Magazine (27-28 May 2023) calls the facilities that perform this process, cryonics, and looking up my dictionary, there is a distinction. Cryogenics is about low temperature freezing in general, and cryonics deals with the deep-freezing of bodies specifically, with the intention of one day reviving them.
 
The article cites a few people, but the author, Ross Bilton, features an Australian, Peter Tsolakides, who is in my age group. From what the article tells me, he’s a software engineer who has seen many generations of computer code and has also been a ‘globe-trotting executive for ExxonMobil’.
 
He’s one of the drivers behind a cryonic facility in Australia – its first – located at Holbrook, which is roughly halfway between Melbourne and Sydney. In fact, I often stop at Holbrook for a break and meal on my interstate trips. According to my car’s odometer it is almost exactly half way between my home and my destination, which is a good hour short of Sydney, so it’s actually closer to Melbourne, but not by much.
 
I’m not sure when Tsolakides plans to enter the facility, but he’s forecasting his resurrection in around 250 years time, when he expects he may live for another thousand years. Yes, this is science fiction to most of us, but there are some science facts that provide some credence to this venture.
 
For a start, we already cryogenically freeze embryos and sperm, and we know it works for them. There is also the case of Ewa Wisnierska, 35, a German paraglider taking part in an international competition in Australia, when she was sucked into a storm and elevated to 9947 metres (jumbo jet territory, and higher than Everest). Needless to say, she lost consciousness and spent a frozen 45 mins before she came back to Earth. Quite a miracle and I’ve watched a doco on it. She made a full recovery and was back at her sport within a couple of weeks. And I know of other cases, where the brain of a living person has been frozen to keep them alive, as counter-intuitive as that may sound.
 
Believe it or not, scientists are divided on this, or at least cautious about dismissing it outright. Many take the position, ‘Never say never’. And I think that’s fair enough, because it really is impossible to predict the future when it comes to humanity. It’s not surprising that advocates, like Tsolakides, can see a future where this will become normal for most humans. People who decline immortality will be the exception and not the norm. And I can imagine, if this ‘procedure’ became successful and commonplace, who would say no?
 
Now, I write science fiction, and I have written a story where a group of people decided to create an immortal human race, who were part machine. It’s a reflection of my own prejudices that I portrayed this as a dystopia, but I could have done the opposite.
 
There may be an assumption that if you write science fiction then you are attempting to predict the future, but I make no such claim. My science fiction is complete fantasy, but, like all science fiction, it addresses issues relevant to the contemporary society in which it was created.
 
Getting back to the article in the Weekend Australian, there is an aspect of this that no one addressed – not directly, anyway. There’s no point in cheating death if you can’t cheat old age. In the case of old age, you are dealing with a fundamental law of the Universe, entropy, the second law of thermodynamics. No one asked the obvious question: how do you expect to live for 1,000 years without getting dementia?
 
I think some have thought about this, because, in the same article, they discuss the ultimate goal of downloading their memories and their thinking apparatus (for want of a better term) into a computer. I’ve written on this before, so I won’t go into details.
 
Curiously, I’m currently reading a book by Sabine Hossenfelder called Existential Physics; A Scientist’s Guide to Life’s Biggest Questions, which you would think could not possibly have anything to say on this topic. Nevertheless:
 
The information that makes you you can be encoded in many different physical forms. The possibility that you might one day upload yourself to a computer and continue living a virtual life is arguably beyond present-day technology. It might sound entirely crazy, but it’s compatible with all we currently know.
 
I promise to write another post on Sabine’s book, because she’s nothing if not thought-provoking.
 
So where do I stand? I don’t want immortality – I don’t even want a gravestone, and neither did my father. I have no dependents, so I won’t live on in anyone’s memory. The closest I’ll get to immortality are the words on this blog.

Thursday 25 May 2023

Philosophy’s 2 disparate strands: what can we know; how can we live

The question I’d like to ask, is there a philosophical view that encompasses both? Some may argue that Aristotle attempted that, but I’m going to take a different approach.
 
For a start, the first part can arguably be broken into 2 further strands: physics and metaphysics. And even this divide is contentious, with some arguing that metaphysics is an ‘abstract theory with no basis in reality’ (one dictionary definition).
 
I wrote an earlier post arguing that we are ‘metaphysical animals’ after discussing a book of the same name, though it was really a biography of 4 Oxford women in the 20th Century: Elizabeth Anscombe, Mary Midgley, Philippa Foot and Iris Murdoch. But I’ll start with this quote from said book.
 
Poetry, art, religion, history, literature and comedy are all metaphysical tools. They are how metaphysical animals explore, discover and describe what is real (and beautiful and good). (My emphasis.)
 
So, arguably, metaphysics could give us a connection between the 2 ‘strands’ in the title. Now here’s the thing: I contend that mathematics should be part of that list, hence part of metaphysics. And, of course, we all know that mathematics is essential to physics as an epistemology. So physics and metaphysics, in my philosophy, are linked in a rather intimate  way.
 
The curious thing about mathematics, or anything metaphysical for that matter, is that, without human consciousness, they don’t really exist, or are certainly not manifest. Everything on that list is a product of human consciousness, notwithstanding that there could be other conscious entities somewhere in the universe with the same capacity.
 
But again, I would argue that mathematics is an exception. I agree with a lot of mathematicians and physicists that while we create the symbols and language of mathematics, we don’t create the intrinsic relationships that said language describes. And furthermore, some of those relationships seem to govern the universe itself.
 
And completely relevant to the first part of this discussion, the limits of our knowledge of mathematics seems to determine the limits of our knowledge of the physical world.
 
I’ve written other posts on how to live, specifically, 3 rules for humans and How should I live? But I’m going to go via metaphysics again, specifically storytelling, because that’s something I do. Storytelling requires an inner and outer world, manifest as character and plot, which is analogous to free will and fate in the real world. Now, even these concepts are contentious, especially free will, because many scientists tell us it’s an illusion. Again, I’ve written about this many times, but it’s relevance to my approach to fiction is that I try and give my characters free will. An important part of my fiction is that the characters are independent of me. If my characters don’t take on a life of their own, then I know I’m wasting my time, and I’ll ditch that story.
 
Its relevance to ‘how to live’ is authenticity. Artists understand better than most the importance of authenticity in their work, which really means keeping themselves out of it. But authenticity has ramifications, as any existentialist will tell you. To live authentically requires an honesty to oneself that is integral to one’s being. And ‘being’ in this sense is about being human rather than its broader ontological meaning. In other words, it’s a fundamental aspect of our psychology, because it evolves and changes according to our environment and milieu. Also, in the world of fiction, it's a fundamental dynamic.
 
What's more, if you can maintain this authenticity (and it’s genuine), then you gain people’s trust, and that becomes your currency, whether in your professional life or your social life. However, there is nothing more fake than false authenticity; examples abound.
 
I’ll give the last word to Socrates; arguably the first existentialist.
 
To live with honour in this world, actually be what you try to appear to be.


Saturday 29 April 2023

Can philosophy be an antidote to dogma?

 This is similar to another post I wrote recently, both of which are answers to questions I found on Quora. The reason I’m posting this is because I think it’s better than the previous one. Not surprisingly, it also references Socrates and the role of argument in philosophical discourse.
 
What qualities are needed to be a good philosopher?
 
I expect you could ask 100 different philosophers and get 100 different answers. Someone (Gregory Scott), in answer to a similar question, claimed that everyone is a philosopher, but not necessarily a good one.
 
I will suggest 2 traits that I try to cultivate in myself: to be intellectually curious and to be analytical. But I’m getting ahead of myself.
 
For a start, there are many ‘branches’ or categories of philosophy: epistemology and ethics, being the best known and most commonly associated with philosophy. Some might include ontology as well, which has a close relationship with epistemology, like 2 sides of the same coin. There is also logic and aesthetics but then the discussion becomes interminable.
 
But perhaps the best way to answer this question is to look at philosophers you admire and ask yourself, what qualities do they possess that merit your admiration?
 
Before I answer that for myself, I’m going to provide some context. Sandy Grant (philosopher at the University of Cambridge) published an essay titled Dogmas (Philosophy Now, Issue 127, Aug/Sep 2018), whereby she points out the pitfalls of accepting points of view on ‘authority’ without affording them critical analysis. And I would argue that philosophy is an antidote to dogma going back to Socrates, who famously challenged the ‘dogmas’ of his day. Prior to Socrates, philosophy was very prescriptive where you followed someone’s sayings, be they from the Bible, or Confucius or the Upanishads. Socrates revolutionary idea was to introduce argument, and philosophy has been based on argument ever since.
 
Socrates is famously attributed with the saying, The unexamined life is not worth living, which he apparently said before he was forced to take his own life. But there is another saying attributed to Socrates, which is more germane, given the context of his death.
 
To live with honour in this world, actually be what you try to appear to be.
 
Socrates also acquitted himself well in battle, apparently, so he wasn’t afraid of dying for a cause and a principle. Therefore, I would include integrity as the ‘quality’ of a good person, let alone a philosopher.
 
We currently live in an age where the very idea of truth is questioned, whether it be in the realm of science or politics or media. Which is why I think that critical thinking is essential, whereby one looks at evidence and the expertise behind that evidence. I’ve spent a working lifetime in engineering, where, out of necessity, one looks to expertise that one doesn’t have oneself. Trust has gone AWOL in our current social media environment and the ability to analyse without emotion and ideology is paramount. To accept evidence when it goes against your belief system is the mark of a good philosopher. Evidence is the keystone to scientific endeavour and also in administering justice. But perhaps the greatest quality required of a philosopher is to admit, I don’t know, which is also famously attributed to Socrates.