Paul P. Mealing

Check out my book, ELVENE. Available as e-book and as paperback (print on demand, POD). Also this promotional Q&A on-line.

Saturday 25 December 2021

Revisiting Donald Hoffman’s alternative theory of evolution

 Back in November 2016, so 5 years ago, I wrote a post in response to an academic paper by Donald Hoffman and Chetan Prakash called Objects of Consciousness, where I specifically critiqued their ideas on biological evolution. Despite co-authoring the paper, I believe this particular aspect of their paper is predominantly Hoffman’s, based on an article he wrote for New Scientist, where he expressed similar views. One of his key arguments was that natural selection favours ‘fitness’ over ‘truth’.

 

...we find that natural selection does not, in general, favor perceptions that are true reports of objective properties of the environment. Instead, it generally favors perceptual strategies that are tuned to fitness.

 

One way to use fewer calories is to see less truth, especially truth that is not informative about fitness. (My emphasis)

 

What made me revisit this was an interview in Philosophy Now (Issue 147, Dec 2021/Jan 2022) with Samuel Grove, who recently published Retrieving Darwin’s Revolutionary Idea: The Reluctant Radical. According to Grove, Darwin was reluctant to publish The Decent of Man, because applying natural selection to humans was controversial, despite the success of The Origin of Species by Means of Natural Selection (full title). The connection to Hoffman’s argument is that Darwin struggled with the idea that evolution could ‘select’ for ‘truth’. To quote Grove:

 

Natural selection is premised on three laws: the law of inheritance, the law of variation, and the law of superfecundity (where organisms produce more offspring than can possibly survive). Together, these laws produce selection, and over the course of time, evolution. Well, Darwin’s question was, how could evolution produce a subject capable of knowing these very laws? Or, why would evolution select for fidelity to truth or laws? Selection favours survival, not truth. (My emphasis again)

 

Darwin turned to arguments, that as Grove points out, were ‘the common garden variety racism of the time’ – specifically, ‘group selection’ that favoured Anglo Saxon groups. Apparently, Darwin was reluctant to consider ‘group selection’ (as opposed to ‘individual selection’), but did so because it led to a resolution that would have been politically acceptable in his day. I will return to this point later.

 

So, even according to Darwin, Hoffman may have a point, though I’m not sure that Darwin and Hoffman are even talking about the same idea of ‘truth’. More on that later.

 

For those unfamiliar with Hoffman, his entire argument centres on the fundamental idea that ‘nothing exists unperceived, including space and time’. For more details, read my previous post, or read his co-authored paper with Prakash. I need to say upfront that I find it hard to take Hoffman seriously. Every time I read or listen to him, I keep expecting him to say, ‘Ah, see, I fooled the lot of you.’ His ideas only make sense to me if he believes we live in a computer simulation, which he’s never claimed. In fact, that would be my first question to him, if I ever met him. It’s an idea that has some adherents. Just on that, I would like to point out that chaos is incomputable, and the Universe is chaotic on a number of levels, including evolution, as it turns out.

 

In a previous life, I sometimes became involved in contractual disputes on major engineering projects (in Australia and US), preparing evidence for lawyers, and having to address opponents’ arguments. What I found in a number of cases, was that people prepared simple arguments that were nevertheless compelling. In fact, they often delivered them as if they were a fait accompli. In most of these cases, I found that by digging a little deeper, they could be challenged successfully. I have to admit that I’m reminded of this when I examine Hoffman’s argument on natural selection favouring ‘fitness’ over ‘truth’.

 

Partly, this is because his arguments highlight contradictions in his own premise and partly because one of his key arguments is contradicted by evidence, which, I concede, he may not be aware of.

 

For a start, what does Hoffman mean by ‘fitness’?

 

He talks about fitness in terms of predators and prey:

 

But in the real world where predators are on the prowl and prey must be wary, the race is often to the swift. It is the slower gazelle that becomes lunch for the swifter cheetah

 

This quote is out of context, where he’s arguing that ‘swiftness’ in response, be it the gazelle or the cheetah, favours less information, therefore less time; over more information, therefore lost time. Leaving aside the fact that survival of either animal is dependent on the accuracy of their ‘modelling’ of their environment, if the animal being chased or doing the chasing ‘doesn’t exist unperceived’, then they might as well be in a dream. In fact, we often find ourselves being chased in a dream, which has no consequences to our ‘survival’ in real life. The argument contradicts the premise.

 

Hoffman and Prakash quote Steven Palmer from a ‘graduate-level textbook’ (1999):

 

Evolutionarily speaking, visual perception is useful only if it is reasonably accurate . . . Indeed, vision is useful precisely because it is so accurate. By and large, what you see is what you get. When this is true, we have what is called veridical perception . . . perception that is consistent with the actual state of affairs in the environment. This is almost always the case with vision . . .  (Authors’ emphasis)

 

Hoffman and Prakash then argue that ‘using Monte Carlo simulations of evolutionary games and genetic algorithms, we find that natural selection does not, in general, favor perceptions that are true reports of objective properties of the environment’. In other words, they effectively argue that Palmer’s emphasis on ‘veridical perception’ is wrong. I can’t argue with their Monte Carlo simulations, because they don’t provide the data. However, real world evidence would suggest that Palmer is correct.

 

I read a story on Quora by a wildlife ranger about eagles who have had one eye damaged, usually in intra-species mid-air fights. In nearly all cases (he described one exception), an eagle who is blind in one eye needs to be euthanised because they would invariably starve to death due to an inability to catch prey. So here you have ‘fitness’ dependent on vision being accurate.

 

Leaving aside all this nit-picking about natural selection favouring ‘fitness’ over ‘truth’, how does it support their fundamental thesis that reality only exists in the mind? According to them, their theory of evolution ‘proves’ that reality doesn’t exist unperceived. Can you even have evolution if reality doesn’t exist (except in the mind)?

 

And this brings me back to Darwin, because what he didn’t consider was that, in the case of humans, cultural evolution has overtaken biological evolution, and this is unique to humanity. I wrote another post where I argue that The search for ultimate truth is unattainable, but there are 'truths' we have found throughout the history of our cultural evolution and they are in mathematics. It’s true that evolution didn’t select for this; it’s an unexpected by-product, but it has led to the understanding of laws governing the very Universe that even Darwin would be amazed to know. 



Sunday 21 November 2021

Cancel culture – the scourge of our time

There are many things that cause me some anguish at the moment, not least that Donald Trump could easily be re-elected POTUS in 2024, despite deliberately undermining and damaging the very institution he wants to lead, which is American democracy. It’s not an exaggeration to say that he’s attacked it at its core.


This may seem a mile away from the topic I’ve alluded to in the title of my post, but they both seem to be symptoms of a divisiveness I haven’t seen since the Vietnam war. 

 

The word, ‘scourge’, is defined as ‘a whip used as an instrument of punishment’; and that’s exactly how cancel culture works, with social media the perfect platform from which to wield it.

 

In this weekend’s Good Weekend magazine (Fairfax Group), the feature article is on this very topic. But I would like to go back to the previous weekend, when another media outlet, Murdoch’s Weekend Australian Magazine published an article on well known atheist, Richard Dawkins. It turns out that at the ripe old age of 80, Dawkins has been cancelled. To be precise, he had his 1996 Humanist of the Year award withdrawn by the American Humanist Association (AHA) earlier this year, because, in 2015, he tweeted a defence of Rachel Doleza (a white chapter president of NAACP, the National Association for the Advancement of Coloured People) who had been vilified for identifying as Black.

 

Of course, I don’t know anything about Rachel Doleza or the context of that stoush, but I can identify with Dawkins, even though I’ve never suffered the same indignity. Dawkins and I are of a similar mould, though we live in different strata of society. In saying that, I don’t mean that I agree with all his arguments, because I obviously don’t, but we are both argumentative and are not shy in expressing our opinions. I really don’t possess the moral superiority to throw stones at Dawkins, even though I have.

 

I remember my father once telling me that if you admired an Australian fast bowler (he had someone in mind) then you also had to admire an English fast bowler (of the same generation), because they had the exact same temperament and wicket-taking abilities. Of course, that also applies to politicians. And it pretty much applies to me and Dawkins.

 

On the subject of identifying as ‘black’, I must tell a story related to me by a friend I knew when I worked in Princeton in 2001/2. She was a similar age to me and originally from Guyana. In fact, she was niece to West Indies champion cricketer, Lance Gibbs, and told me about attending his wedding when she was 8 years old (I promise no more cricketing references). But she told me how someone she knew (outside of work) told her that she ‘didn’t know what it was like to be black’. To which she replied, ‘Of course I know I’m black, I only have to look in the mirror every morning.’  Yes, it’s funny, but it goes to a deeper issue about identity. So a black person, who had lived their entire life in the USA, was telling another black person, who had come from outside of the US, that they didn’t know what it was like to be ‘black’. 

 

Dawkins said that, as a consequence, he’d started to self-censor, which is exactly what his detractors want. If Dawkins has started to self-censor, then none of us are safe or immune. What hurt him, of course, was being attacked by people on the Left, which he mostly identifies with. And, while this practice occurs on both sides, it’s on the Left where it has become most virulent. 

 

“I self-censor. More so in recent years. Why? It’s not a thing I’ve done throughout my life, I’ve always spoken my mind openly. But we’re now in a time when if you do speak your mind openly, you are at risk of being picked up and condemned.”

 

“Every time a lecturer is cancelled from an American university, that’s another God knows how many votes for Trump.”

 

And this is the thing: the Right loves nothing more than the Left turning on itself. It’s insidious, self-destructive and literally soul-destroying. In the Good Weekend article, they focus on a specific case, while also citing other cases, both in Australia and America. The specific case was actor, Hugh Sheridan, having a Sydney Festival show cancelled, which he’d really set his sights on, because he was playing a trans-gender person which created outrage in the LGBTQIA+ community. Like others cited in the article, he contemplated suicide which triggered close friends to monitor him. This is what it’s come to. It’s a very lengthy article, which I can’t do justice to on this post, but there is a perversion here: all the shows and people who are being targeted are actually bringing diversity of race and sexuality into the public arena and being crucified by the people they represent. The conservatives, wowsers and Bible-bashers must love it.

 

This is a phenomenon that is partly if not mostly, generational, and amplified by social media. People are being forced to grovel.

 

Emma Dawson, head of the Labor-aligned (Australian political party, for overseas readers) Per Capita think tank, told the Good Weekend“[cancel culture is] more worrying to me than just about anything other than far-right extremism. It is pervasive among educated young people; very few are willing to question it.”

 

‘In 2019, Barack Obama warned a group of young people: “This idea of purity, and you’re never compromised and always politically woke... you should get over that quickly. The world is messy.”

 

And this is the nub of the issue: cancel culture is all about silencing any debate, and, without debate, you have authoritarianism, even though it’s disguised as its opposite.

 

In the same article, the author, James Button, argues that the rise of Donald Trump is not a coincidence in the emergence of this phenomenon.

 

The election of Donald Trump horrified progressives. Here was a president – elected by ordinary Americans – who was racist, who winked at neo-Nazis and who told bare-faced lies in a brazen assertion of power while claiming that the liars were progressive media. His own strategy adviser, Stephen Bannon, said that the way to win the contest was to overwhelm the media with misinformation, to “flood the zone with shit”.

 

And they succeeded so well that America is more divided than it has been since its historical civil war.


To return to Hugh Sheridan, whom I think epitomises this situation, at least as it’s being played out in Australia, in that it’s the Arts that are coming under attack, and from the Left, it has to be said. Actors and writers (like myself) often portray characters who have different backgrounds to us. To give a recent example on ABC TV, which produces some outstanding free-to-air dramas with internationally renowned casts, when everything else is going into subscribed streaming services. Earlier this year, they produced and broadcast a series called The Newsreader, set in the 1980s when a lot of stuff was happening both locally and overseas. ‘At the 11th AACTA (Australian Academy of Cinema and Television Arts) awards, the show was nominated for more awards than any other program’ (Wikipedia).

 

A key plotline of the show was that the protagonist was gay but not openly so. The point is that I assume the actor was straight, although I don’t really know, but it’s what actors do. God knows, there have been enough gay actors who have played straight characters (Sir Ian McKellen, who played Gandalf, as well as Shakespearean roles). So why crucify someone who is part of the LGBTQIA+ community for playing a transgender role. He was even accused of being homophobic and transgenderphobic. He tweeted back, “you’re insane”, which only resulted in him being trolled for accusing his tormentors of being ‘insane’.

 

Someone recently asked me why I don’t publish what I write anymore. There is more than one reason, but one is fear of being cancelled. I doubt a publisher would publish what I write, anyway. But also, I suffer from impostor syndrome in that I genuinely feel like an impostor and I don’t need someone to tell me. The other thing is that I simply don’t care; I don’t feel the need to publish to validate my work.


Saturday 13 November 2021

To the End of the Universe

I like to remind myself and others how little I know. It’s one of the reasons I like Quora, where I get to occasionally interact with people who know considerably more than me. One such person is Mark John Fernee, a physicist at the University of Queensland. I’ve learned a lot of science from an approach based on scepticism. For example, I was sceptical about relativity theory: that clocks could really slowly down and why did they slow down for one observer but not another, as demonstrated in the famous twin paradox. In fact, it’s nature’s paradoxes that provide the incentive to try and understand it to the extent that one can. 

 

Another example is quantum mechanics. For a long time, I followed David Bohm’s approach, which was really an attempt to bring QM back down to Earth so-to-speak. I believe that both Schrodinger and Einstein also believed in a ‘hidden-variables’ approach.

 

I finally gave this up when I concluded that QM and classical physics obey different rules: superposition and entanglement are not part of classical physics, either experimentally or mathematically. And I found that special relativity only made sense in the context of general relativity (which I discuss in more detail below).

 

And then you have the combination of special relativity with QM, which, from a mathematical perspective, allows anti-particles to exist. As Fernee points out, because an anti-particle can be represented mathematically by a particle going backwards in time, it ensures that charge is conserved by time’s arrow. In other words, you can turn an electron into a positron, or vice versa, by reversing time, which is why it’s never observed.

 

One of the paradoxes I now struggle with is that, according to special relativity, you can have different ‘nows’ in different parts of the universe. This is why most, if not all physicists, argue that the universe is completely deterministic, if someone’s future can be hypothetically observed by someone else’s motion. I confess I’m very sceptical about this. What they're saying is that the ‘now’ in some other part of the Universe is changed by an observer’s motion locally. Fernee quotes Roger Penrose in response to a question: can we theoretically teleport to some other location in the Universe instantaneously, like we see in science-fiction movies? According to Fernee (quoting Penrose), if you could and then teleport back, you might arrive before you left, because a random movement by you could change the ‘now’ in that distant part of the universe into your past. I’m assuming this can be demonstrated mathematically; it’s a consequence of simultaneity changing depending on the observer, according to special relativity. 

 

I’ve discussed this in other posts. I like to point out that, where there’s a causal relationship, the sequence of events can’t be changed, dependent on an observer’s perspective. Which makes me wonder: does a sequence change, dependent on an observer’s perspective, when they’re not causal? Is it possible that there is a sequence of events independent of any observer?

 

And this leads to another paradox that is hardly ever addressed which is that, despite this proliferation of ‘nows’, dependent on observers’ perspectives, we have an ‘age of the Universe’. I actually raised this with Fernee in a dialogue I had with him, and he referenced a paper by Tamara M. Davis and Charles H. Lineweaver at the University of New South Wales, titled, Expanding Confusion: Common Misconceptions of Cosmological Horizons and the Superluminal Expansion of the Universe. I’ve lost the link, and I can no longer even find the post on Quora, but I downloaded the paper, which is 24 pages long, not including the references.

 

Of course, it’s an academic paper, yet I found it easier to follow and understand than I might have expected. Which is not to say I have a full grasp of it, but I feel I can relay some of its most pertinent points. The paper is dated 13 November 2013, so it seems apt I’m writing about it on 13 Nov, 2021. Firstly, the cosmological model of the Universe the authors discuss, is referred to as ΛCDM cosmology (Lambda-CDM cosmology), where CDM is an acronym for Cold Dark Matter. Lambda (Λ) is the cosmological constant that gives us ‘dark energy’, so the model includes both dark energy and dark matter.

 

As the title suggests, the authors discuss misconceptions found in the literature concerning the horizon problem, and at the end they provide a list of examples, including one by Richard Feynman (1995), 

 

“It makes no sense to worry about the possibility of galaxies receding from us faster than light, whatever that means, since they would never be observable by hypothesis.” 

 

And this one by Paul Davies (1978): 

 

“. . . galaxies several billion light years away seem to be increasing their separation from us at nearly the speed of light. As we probe still farther into space the redshift grows without limit, and the galaxies seem to fade out and become black. When the speed of recession reaches the speed of light we cannot see them at all, for no light can reach us from the region beyond which the expansion is faster than light itself. This limit is called our horizon in space, and separates the regions of the universe of which we can know from the regions beyond about which no information is available, however powerful the instruments we use.” 

 

What the authors expound upon in the main body of their text is that there are, in effect, a number of horizons, which makes these statements erroneous at best. To be fair to both Feynman and Davies, the ΛCDM model of the Universe wasn’t known at the time. Dark energy wasn’t officially ‘discovered’ until 1998. Davis and Lineweaver provide diagrams to show these various horizons, which I can’t duplicate here, and if I did, I’d have trouble explicating them. But basically, there is a particle horizon, which is the limit of the observable universe, the Hubble sphere, which is the boundary of the expanding universe (where it equals c) and the event horizon. (To quote the authors: Our event horizon is our past light cone at the end of time, t = ∞ in this case.) There is a logical tendency to think they should all be the same thing, but they’re not, as the authors spend a good portion of their 24 pages expounding upon. To quote again:

 

The particle horizon at any particular time is a sphere around us whose radius equals the distance to the most distant object we can see... Our effective particle horizon is the cosmic microwave background (CMB).

 

Whereas:

 

Hubble sphere is defined to be the distance beyond which the recession velocity exceeds the speed of light, DHS = c/H. As we will see, the Hubble sphere is not an horizon. Redshift does not go to infinity for objects on our Hubble sphere (in general) and for many cosmological models we can see beyond it... The ratio of  3/1 is the ratio between the radius of the observable universe and the age of the universe, 46 Glyr/13.5 Gyr.

 

What you have to get your head around is that the universe is dynamic, and given the time it takes for light to reach us from the edge of the Universe, both the edge and the objects (we’re observing) have moved on, quite literally. This means we can observe objects over the horizon so-to-speak. But it’s even more complex than that, because the Hubble sphere, which is expanding, can overtake photons that were emitted beyond the horizon but are travelling towards us. According to the authors, we can observe objects that are ‘now’ travelling at superluminal speeds relative to us. 

 

This is how the authors explain it:

 

Light that superluminally receding objects emit propagates towards us with a local peculiar velocity of c, but since the recession velocity at that distance is greater than c, the total velocity of the light is away from us. However, since the radius of the Hubble sphere increases with time, some photons that were initially in a superluminally receding region later find themselves in a subluminally receding region. They can therefore approach us and eventually reach us. The objects that emitted the photons however, have moved to larger distances and so are still receding superluminally. Thus we can observe objects that are receding faster than the speed of light. 

 

One of the most illuminating aspects of their dissertation, for me, was that one needs to use a general relativistic (GR) derivation of the Doppler redshift and not a special relativistic (SR) derivation, which is usually used. They show graphically that the SR and GR derivations diverge, especially for further distances. On the same graph, they show how a non-relativistic Doppler shift, which would be ‘tired light’ (authors’ term) is actually a horizonal line, so nowhere near. The graph, of course, shows these curves against observations of super novae. As they explain it:

 

The general relativistic interpretation of the expansion interprets cosmological redshifts as an indication of velocity since the proper distance between comoving objects increases. However, the velocity is due to the rate of expansion of space, not movement through space, and therefore cannot be calculated with the special relativistic Doppler shift formula. 

 

What they are saying is that there is a distinction between the movement of the objects in space and the movement of space itself. For me, this ends the debate about whether ‘space’ is an entity or just the distance between objects. As much as I admire and respect Viktor T Toth, I’ve always had a problem with his argument that space ‘doesn’t expand’, but only the objects ‘move’ thus creating more space between them. The Hubble sphere, as I understand it, is where space equals c.

 

Later in their paper, Davis and Lineweaver describe how they derived their equation for the GR redshift.

 

For the observed time dilation of supernovae we have to take into account an extra time dilation factor that occurs because the distance to the emitter (and thus the distance light has to propagate to reach us) is increasing.

 

In other words, in calculating the redshift of a ‘comoving galaxy’, they also have to take into account the constant expansion of space in the photon’s journey to the observer. 

 

....the peculiar velocity of a photon, Rχ ̇, is cSince the velocity of light through comoving coordinates is not constant (χ ̇ = c/R), to calculate comoving distance we cannot simply multiply the speed of light through comoving space by time. We have to integrate over this changing comoving speed of light for the duration of propagation. Thus, the comoving coordinate of a comoving object that emitted the light we now see at time t is attained by integrating.  (χ ̇is the time dependent expansion of space and R is the radial distance). 

 

Notice that in contrast to special relativity, the redshift does not indicate the velocity, it indicates the distance. That is, the redshift tells us not the velocity of the emitter, but where the emitter sits (at rest locally) in the coordinates of the universe. 

 

In other words, when we integrate χ ̇, we get χ, which is distance. The authors provide another equation for determining the velocity.

 

Now, one of the obvious aspects of this whole exercise is that they are calculating a redshift across space that changes over time, so what does time mean in this context?

 

This is how the authors explain it, just before their conclusion:

 

Throughout this paper we have used proper time, t, as the temporal measure. This is the time that appears in the RW metric and the Friedmann equations. This is a convenient time measure because it is the proper time of comoving observers. Moreover, the homogeneity of the universe is dependent on this choice of time coordinate — if any other time coordinate were chosen (that is not a trivial multiple of t) the density of the universe would be distance dependent. Time can be defined differently, for example to make the SR Doppler shift formula correctly calculate recession velocities from observed redshifts (Page, 1993). However, to do this we would have to sacrifice the homogeneity of the universe and the synchronous proper time of comoving objects.

 

I find it interesting that they adopt a ‘proper time’ for the whole universe. It makes one wonder what ‘now’ really means.


 

Footnote 1: I want to point out that in their acknowledgements, Davis and Lineweaver reference Brian Schmidt, who received a joint Nobel Prize for his work in empirically confirming dark energy, or the cosmological constant (Λ).


Footnote 2: You can download the paper here.



Addendum: This is a video by someone (who knows more than me) and doesn’t give his name. I posted a video by him before, regarding the question: Is gravity a force? His videos on Penrose tiling and the Feigenbaum constant are among the best.

 

In this video, he refutes my claim, arguing that space doesn’t expand. He makes one very compelling point that if space expanded so would atoms and so would we. Victor T Toth makes the exact same point, and I’d have to agree. The size of all atoms is determined by h (Planck's constant), which doesn't change with the expansion of the Universe. I might add that this presenter and Toth disagree on whether gravity is a force or not, so physicists don’t always agree, even in the same field, like cosmology.

 

In the video, he argues that there are 3 types of Doppler shift and contends that they are actually all the same. Most intriguing was the thought experiment that someone in ‘free fall’ wouldn’t see the Doppler shift that another observer would. In other words, it’s observer dependent.

 

But there is a spacetime metric or manifold, which forms the basis of general relativity theory (GR) and this can warp and curve (according to said theory). In fact, there is a phenomenon called ‘frame dragging’, where spacetime is dragged around by a spinning black hole. Light is always c in reference to this spacetime manifold. So when ‘space’ reaches the speed of light at the horizon relative to us, light is still c in that reference frame, even though it is expanding away from us at c or more. Space can travel faster than light, even though massive particles can’t, which is why ‘inflation’, proposed at the birth of the Universe, is possible.

 

Getting back to the Doppler shift the authors cite in their paper, they use a GR Doppler shift, which I believe isn’t covered in the video.


Saturday 6 November 2021

Reality and our perception of it

The latest issue of Philosophy Now (Issue 146, Oct/Nov 2021) has as its theme, ‘Reality’. The cover depicts Alice falling down the rabbit hole, with the notated question, What’s Really Real? I was motivated (inspired is the wrong word) to write a letter to the Editor, after reading an essay by Paul Griffiths, titled, Against Direct Realism. According to the footnote at the end of the article: Dr Paul H. Griffiths has a background in physics and engineering, and a longstanding interest in the philosophy and science of perception. I have a background in engineering and an interest in philosophy and science (physics in particular), but there the similarity ends.

 

Griffiths gives an historical account, mostly last century, concerning problems and points of view on ‘direct realism’ and ‘indirect realism’, using terms like ‘disjunctivism’ and ‘representationalism’, making me wonder if all of philosophy can be reduced to a collection of isms. To be fair to Griffiths, he’s referencing what others have written on this topic, and how it’s led to various schools of thought. I took the easy way out and didn’t address any of that directly, nor reference any of his many citations. Instead, I simply gave my interpretation of the subject based on what I’ve learned from the science, and then provided my own philosophical twist.

 

I’ve covered a lot of this before when I wrote an essay on Kant. Griffiths doesn’t mention Kant, but arguably that’s where this debate began, when he argued that we can never know the ‘thing-in-itself’, but only a perception of it. Just to address that point, I’ve argued that the thing-in-itself varies depending on the scale one observes it at. It also depends on things like what wavelength radiation you might use to probe it. 

 

But, in the context of direct realism or indirect realism, various creatures perceive reality in different ways, which I allude to in my 400 word response. If I was to try and put myself in one of Griffith’s categories, I expect I’m an ‘indirect realist’ because I believe in an independent reality and that my ‘perception’ of it is unique to my species, meaning other species would perceive it differently, either because they have different senses or the senses they have can perceive other parts of the spectrum to mine. For example, some insects and birds can see in the ultra-violet range, and we can see some colours that other primates can’t see.

 

However, I never mention those terms, or even Kant, in my missive to the Editor. I do, however, mention the significance of space and time, both to reality, and our perception of it. Here is my response:

 

 

Paul Griffith’s essay titled, Against Direct Realism (Issue 146, October/November 2021) discusses both the philosophy and science of ‘perception’, within the last century in particular. There are two parts to this topic: an objective reality and our ability to perceive it. One is obviously dependent on the other, and they need to be addressed in that order.

 

The first part is whether there is an objective reality at all. Donald Hoffman claims that ‘nothing exists unperceived, including space and time’, and that there are only ‘conscious agents’. This is similar to the argument that we live in a simulation. There is, of course, one situation where this happens, and that’s when we are dreaming. Our brains create a simulacrum of reality in our minds, which we can not only see but sometimes feel. We’re only aware that it’s not reality when we wake up.

 

There is a major difference between this dream state and ‘real life’ and that is that reality can be fatal – it can kill you. This is key to understanding both aspects of this question. It’s not contentious that our brains have evolved the remarkable ability to model this reality, and that is true in other creatures as well, yet we perceive different things, colour being the most obvious example, which only occurs in some creature’s mind. Birds can see in almost 300 degree vision, and bats and dolphins probably ‘see’ in echo-location, which we can’t even imagine. Not only that, but time passes at different rates for different creatures, which we can mimic with time-lapse or slow-motion cinematography. 

 

But here’s the thing: all these ‘means’ of perception are about keeping us and all these creatures alive. Therefore, the model in our minds must match the external reality with some degree of accuracy, yet it does even better than that, because the model even appears to be external to our heads. What’s more, the model predicts the future, otherwise you wouldn’t be able to catch a ball thrown to you. *

 

There is one core attribute of both reality and its perception that is rarely discussed, and that is space and time. We live in a universe with three spatial dimensions and one time dimension, so the models our brains create need to reflect that. The reason we can’t imagine a higher dimensional space, even though we can represent it mathematically, is because we don’t live in one.

 

 

·      There is a 120 millisecond delay between the action and the perception, and your brain compensates for it.

Saturday 30 October 2021

Natural laws; a misnomer?

I’ve referenced Raymond Tallis before, and I have to say up front that I have a lot of respect for his obvious erudition and the breadth of his intellectual discourse. He is an author and regular columnist in Philosophy Now, with a background in neuroscience. I always read his column, because he’s erudite and provocative. In Issue 144 (June/July 2021) he wrote an essay titled, The Laws of Nature. He didn’t use the term ‘misnomer’ anywhere, but that was the gist of his argument.


Tallis and I have a fundamental disagreement concerning the philosophy of science; and physics, in particular. This will become obvious as I expound on his article. He starts by pointing out how the word ‘law’ has theological connotations, as well as cultural ones. It’s a word normally associated with humanmade rules or edicts, which are necessary just so we can live together. An obvious one is what side of the road to drive on, otherwise we would have carnage and road-rage would be the least of our worries.

 

Science evolved out of a religious epistemology (I know that’s an oxymoron), but the pioneers of physics, like Galileo, Kepler and Newton, were all religious people and, from their perspective, they were uncovering ‘God’s laws’. This even extended to Einstein, who often referred to ‘God’ in a metaphorical sense, and saw himself and his contemporary physicists as uncovering the ‘Old One’s Secrets’. Even Stephen Hawking, a self-declared atheist, coined the phrase, ‘The Mind of God’.

 

So I agree with Tallis on this point that the use of the word, law, in this context, is misleading and carries the baggage of an earlier time, going back to the ancient Greeks (and other cultures) that human affairs were contingent on the whims of the Gods.

 

So Tallis searched around for an alternative term, and came up with ‘habits’, whilst admitting that it’s not ideal and that ‘it will have to punch above its usual weight’. But I think Tallis chose the word because, in human terms, ‘habit’ means something we acquire out of familiarity, and may or may not be the best method, or approach, to a specific situation. The idea that nature follows ‘habits’ implies there is no rhyme or reason behind their efficacy or apparent success. Even the word, success, is loaded, yet I think it subverts his point, because they are ‘successful’ in the sense that they ultimately produced a lifeform that can cognise them (more on that below).

 

Tallis makes the point that in nature ‘things just happen’, and the ‘laws’ are our attempt to ‘explain’ them. But, extending this line of thought, he suggests that actually we invent laws to ‘describe’ what nature does, which is why ‘habits’ is a better term.

 

The expectation of finding an explanation of nature’s regularity is the result of extrapolating to the whole of things the belief that every individual thing happens for a reason – that nothing ‘just happens’.

 

The word ‘regularity’ is apt and is one that physicists often use, because that is what we have learned about nature on all scales, and it is why it is predictable to the degree that it is. There is, of course, a missing element in all this, and that is the role of mathematics. I’m not surprised that Tallis doesn’t mention the word (even once as best I can tell), because he believes that physicists have a tendency to ‘mistake the map for the territory’ when they invoke mathematics as having a pivotal role in our epistemology. In another essay, he once argued that the only reason mathematics has a place in physics is because we need to measure things, or quantify them, in order to make predictions that can be verified. However, the very laws (or habits) that are the subject of his essay, are completely dependent on mathematics to be comprehensible at all.

 

In closing, Tallis makes a very good argument: there is a gap between the ‘habits’ that nature follows and the humanmade ‘laws’ in our science that we use to describe these habits. He makes the point that we are forever trying to close this gap as we discover more about nature’s habits. And he’s right, because it appears that, no matter how much we learn, there are always more of nature’s secrets to decipher. Every theory we’ve devised thus far has limits and we’ve even reached a point where our theory for the very large appears irreconcilable, mathematically, with our theory for the very small. But the point I’d make is that mathematics not only gives us our best description of reality, it also delineates the limitations of any particular theory. Consequently, I contend there will always be a gap.

 

Physicists say that the best we can do is provide a model and that model is always mathematical. Hawking made this point in his book, The Grand Design. So the model describes the laws, or habits, to the extent that we understand them at the time, and that it gets updated as we learn more.

 

Tallis mentions the well-known example of Newton’s ‘laws’ being surpassed by Einstein’s. But here’s the thing: the ‘inverse square law’ still applies and that’s not surprising, as it’s dependent on the Universe existing in 3 spatial dimensions. So we not only have a ‘law’ that carries over, but we have an explanation for it. But here’s another thing: the 3 spatial dimensions in combination with the single dimension of time is probably the only combination of dimensions that would allow for a universe to be habitable. Cosmologist and Fellow of the Royal Society, John D Barrow, expounds on this in some detail in his book, The Constants of Nature. (As a side note, planets can only remain in stable orbits over astronomical time periods in 3 dimensions of space.) So where I depart philosophically from Tallis, is that there are fundamental parameters in the Universe’s very structure that determine the consequences of something existing that can understand that structure. 

 

Nevertheless, I agree with Tallis to the extent that I think the term, law, is a misnomer, and I think a better word is ‘principle’. If one goes back to Einstein’s theory of gravity replacing Newton’s, it introduces a fundamental principle called the 'principle of least action', which I think was pointed out by Emmy Noether, not Einstein. As it turns out, the principle of least action also ‘explains’ or ‘describes’ optical refraction, as well as forming the basis of Richard Feynman’s path integral method for QED (quantum electrodynamics). The principle of least action, naturally, has a mathematical formulation called the Lagrangian.

 

Speaking of Emmy Noether, she derived a famous mathematical theorem (called Noether’s theorem) that is a fundamental ‘principle’ in physics, describing the intrinsic relationship between symmetries and conservation laws. It’s hard to avoid the term, law, in this context because it appears to be truly fundamental based on everything we know.

 

So, is this a case of confusing the map with the terrain? Maybe. The Universe doesn’t exist in numbers – it exists as a process constrained by critical parameters, all of which can only be deciphered by mathematics. To give just one example: Planck’s constant, h, determines the size of atoms which form the basis of everything you see and touch.



Other relevant posts: the-lagrangian-possibly-most.html


                                   the-universes-natural-units_9.html


Sunday 17 October 2021

Monty Hall Paradox explained

This is a well known problem based on a 1960s US television game show called Let’s Make a Deal. How closely it resembles that particular show, I don’t know, but it’s not relevant, because it’s easy to imagine. The show’s host’s stage-name was Monty Hall, hence the name of the puzzle.

 

In 1975, an American statistician and professor at the University of California, Berkeley, Steve Selvin, published a short article on the Monty Hall Paradox in The American Statistician, which he saw as a curiosity for a very select group who would appreciate its quirkiness and counter-intuitive answer. He received some criticism, which he easily countered.

 

Another totally unrelated (weekly) periodical, Parade magazine, with a circulation in the tens of millions, had a column called Ask Marilyn, who specialised in solving mathematical puzzles, brain teasers and logical conundrums sent to her by readers. She was Marilyn vos Savant, and entered the Guinness Book of Records in the 1980s as the woman with the highest recorded IQ (185). I obtained all this information from Jim Al-Khalili’s book, Paradox; The Nine Greatest Enigmas in Physics.

 

Someone sent Marilyn the Monty Hall puzzle and she came up with the same counter-intuitive answer as Selvin, but she created an uproar and was ridiculed by mathematicians and academics across the country. Al-Khalili publishes a sample of the responses, at least one of which borders on misogynistic. Notwithstanding, she gave a more comprehensive exposition in a later issue of Parade, emphasising a couple of points I’ll come to later.

 

Now, when I first came across this puzzle, I, like many others, couldn’t understand how she could possibly be right. Let me explain.

 

Imagine a game show where there is just a contestant and the host, and there are 3 doors. Behind one of the doors is the key to a brand-new car, and behind the other 2 doors are goats (pictures of goats). The host asks the contestant to select a door. After they’ve made their selection, the host opens one of the other 2 doors revealing a goat. Then he makes an offer to the contestant, saying they can change their mind and choose the other door if they wish. In the original scenario, the host offers the contestant money to change their mind, upping the stakes.

 

Now, if you were a contestant, you might think the host is trying to trick you out of winning the car (assuming the host knows where the car is). But, since you don’t know where the car is, you now have a 1 in 2 chance of winning the car, whereas before you had a 1 in 3 chance. So changing doors won’t make any difference to your odds.

 

But both Selvin and vos Savant argued that if you change doors you double your chances. How can that be?

 

I found a solution on the internet by the Institute of Mathematics, giving a detail history and a solution using Bayes’ Theorem, which is difficult to follow if you’re not familiar with it. The post also provides an exposition listing 5 assumptions. In common with Al-Khalili, the author (Clive Rix from the University of Leicester), shows how the problem is similar to one posed by Martin Gardner, who had a regular column in Scientific American, involving 3 prisoners, one of whom would be pardoned. I won’t go into it, but you can look it up, if you’re interested, by following the link I provided.

 

What’s important is that there are 2 assumptions that change everything. And I didn’t appreciate this until I read Al-Khalili’s account. Nevertheless, I found it necessary to come up with my own solution.

 

The 2 key assumptions are that the host knows which door hides the car, and the host never picks the car.

 

So I will describe 3 scenarios:

 

1)    The assumptions don’t apply.

2)    We apply assumption No1.

3)    We apply assumptions 1 & 2.

 

In all 3 scenarios, the contestant chooses first.

 

In scenario 1: the contestant has a 1 in 3 chance of selecting the car. If the contest is run a number of times (say, 100 or so), the contestant will choose the car 1/3 of the times, and the host will choose the car 1/3 of the time, and 1/3 of the time it’s not chosen by either of them.

 

Scenario 2: the host knows where the car is, but he lets the contestant choose first. In 1/3 of cases the contestant chooses the car, but now in 2/3 of cases, the host can choose the car.

 

Scenario 3: the host knows where the car is and never chooses the car. Again, the contestant chooses first and has a 1 in 3 chance of winning. But the host knows where the car is, and in 1/3 of cases it's like scenario 1. However, in 2/3 of cases he chooses the door which doesn’t have the car, so the car must be behind the other door. Therefore, if the contestant changes doors they double their chances from 1 in 3 to 2 in 3.


Monday 11 October 2021

Will the 21st Century be a turning point in human history?

 The short answer, I believe, is Yes, but whether it will be positive or negative is up for conjecture. If history is any guide, I’d have to say things don’t look particularly promising. There have been a number of things I’ve read recently, and viewed on TV, from various sources that have made me reflect on this, and it’s hard to know where to start. 

Maybe I’ll start with something I wrote on Facebook recently, which was the seed for this rumination.

 

Humanity has always had both the capacity and inclination for self-destruction. It is our Achilles heel. One can't help but think that the 21st Century is our turning point, one way or the other.

 

There are lots of examples, the Roman Empire being one of the most cited, but also the ancient Egyptians and the Mayans, not to mention Easter Island. Curiously, I’ve just started watching Foundation, on Apple TV, based on Isaac Asimov’s famous books, which is premised on the fall of a future galactic empire founded and run by humanity.

 

But there is another TV series by the BBC called Capital, very contemporary, which I’ve also just started watching, and seems to encapsulate our current situation. I’ve only watched one episode, which centres on a single street in England, but is rendered as a microcosm of global politics and social dilemmas. 


There is the corporate middle manager whose ambition and greed is only outdone by his wife, who mentally spends his money before he’s even earned it. There is the refugee from Zimbabwe who is working illegally, therefore exploited by an ‘agent’, while she faces imminent deportation even though she fears death on arrival. Something that refugees in Australia can readily identify with. There is the Pakistani corner shopkeeper, who is a diligent neighbour, with 2 sons, one who has become religiously conservative and the other who has started, but not completed, 3 university degrees (I can identify with that). He’s the target of a stalker, covertly photographing him and his family. Like everyone else in the street, he’s receiving postcards with the ominous warning, We Want What You Have. In other words, there is an undercurrent of class envy which could fester into something more sinister. Another of the recipients is an elderly woman, whose son and daughter have all but abandoned her, and who is facing terminal illness, but she’s inherited the sin of living in a capitally inflated home.

 

Also, on TV recently, I watched a programme on (Australia’s) ABC 4 Corners, called The Pandora Papers, which is about tax havens for the ultra wealthy and powerful, and really identified an ‘alternative universe’, as one commentator described it, that the rest of us are largely unaware of. The programme showed how, in Australia, unidentified foreign investors are driving the price of homes beyond the reach of ordinary citizens who live here. There have been other programmes about corruption in the food industry in Europe, which goes beyond the borders of Europe.

 

I’ve read other stories in newspapers, and what they all have in common is inequality. Curiously, Philosophy Now (Issue 145 Aug/Sep 2021) had as its theme, existentialism, but included an article called The Stoic’s Lacuna by Alex Richardson, a History teacher at Croydon, UK. Its relevance to this topic was a reference to the Greek stoic, Epictetus, who said, “Seek not that the things which happen should happen as you wish but wish the things which happen to be as they are, and you will have a tranquil flow of life.” In other words, accept one’s lot in life and stop whinging.

 

Richardson’s essay extends into the modern day by referencing Katherine Birbalsingh (given the sobriquet, Britain’s strictest headmistress), Dr Michael Sugrue and Jordan Peterson as ‘modern day stoics’, who all advocate in varying degrees, that inequality is the natural order of things. Birbalsingh may be the most liberal of them, when she says, “Of course the world is run by an old boys’ network, and of course it’s not fair.” I admit I know nothing about her outside Richardson’s essay, but he puts her in the same sentence, therefore category, as former Navy SEAL, Jocko Willink, who effectively argues that a person’s day-to-day struggle with paying off a mortgage and generally making ends meet is completely disconnected from ‘political management of the economy’. 

 

Peterson is someone I’m more familiar with, who effectively argues that inequality is an evolutionary consequence of the survival of the fittest, not only in the natural world but in human affairs. People, especially males, get to the top of the heap, where they are especially attractive to females, who copulate and subsequently procreate with them to ensure the survival of both parties’ genes. As it happens, this exact scenario is played out by one of the families represented in the aforementioned TV show, Capital.

 

Richardson believes that Peterson is a ‘follower’ of the ‘Pareto Principle’, expressed in the Bible (both Mark and Matthew): “For to everyone who has will more be given, and he will have abundance, but from him who has not, even what he has will be taken away.” In other words, the rich get richer and the poor get poorer. Or as Richardson puts it, “wealth and power naturally accumulate in the hands of a few exceptional individuals at the top” (my emphasis).

 

But, according to Richardson, Dr Michael Sugrue is the most blunt and dispassionate, when he said in a popular lecture on Aurelius that ‘Stoicism teaches us that the social structure is “not our problem” and that, “if God, or nature, or whatever is controlling the world makes you a slave then be a good slave.”'

 

The common thread in all these admonitions, is that they are made by people who see themselves among the privileged elite, who would never contemplate that what they advocate for others could befall them.

 

I think inequality drives injustice, corruption and an upside down economy. To give an example, Italy. It’s well known that there is both social and wealth disparity between the north of Italy, which is the capital of supercars and high fashion, and the south of Italy, which is the home of agriculture and the country’s food bowl. But this dichotomy is worldwide. The production of food, which is essential, is one of the lowest paid occupations in the world.

 

Now, let’s add another factor, called climate change. I don’t find it altogether anomalous that climate change has a dichotomous effect on humanity. It’s the consequence of all the ‘progress’ we’ve made since the industrial revolution, and it’s a juggernaut that can’t be stopped. Yet it will affect the poorer nations first. As the Prime Minister of Samoa, Fiame Naomi Mata’afa, recently said, ‘Pacific Islanders don’t want to be the canary in the coalmine for climate change’. If one looks at Italy again, one could argue that supercars have contributed to climate change and the agriculture sector will bear the consequences.

 

I recently did an online course provided by New Scientist, called Greener Living, which was ostensibly about climate change, its causes and its effects on future generations. According to the people running the course, it will require enormous changes to the way we live, including what we eat.

 

In the 25-26 September issue of the Weekend Australian Magazine (a Murdoch publication, btw) there was an interview with 33 year old Anika Molesworth, a scientist who also runs a farm near Broken Hill in NSW. She says that modelling for 2050 (based on nothing changing) would see 30% decrease in rainfall and 2 months of days above 40C, which would make the property effectively inoperable. But she also claims we have the means at our disposal to change this outcome, and she’s a founding director of Farmers for Climate Action. She’s frustrated by the missed opportunities in our country for renewable energy; we have a government that is stubbornly resistant to changes to the status quo.

 

I made an allusion before to the well known meme of evolution as the survival of the fittest, but much of evolution has occurred through symbiosis. Your body is an entire ecosystem to organisms that thrive in order for you to live, largely without your cognisance. I know from a working lifetime in engineering that successful projects are the result of people collaborating and working together. Environments, including our political environments, where people are antagonistic and work against each other, achieve little except blame and finger-pointing. A perfect example of that is the current political climate in America.

 

If we don’t want to self-destruct, we need to work together, punish corruption that erodes the wealth and agency of ordinary people, adopt sustainable economic models, not dependent on infinite consumerism and keeping people in debt for their entire productive lives. If we stick to the mantra that inequality is the ‘natural order’, we will fail and it will ultimately be catastrophic, worse than the Roman Empire, the Egyptian empire or the Mayan empire, because it will be global.