Paul P. Mealing

Check out my book, ELVENE. Available as e-book and as paperback (print on demand, POD). Also this promotional Q&A on-line.
Showing posts with label Anthropic Principle. Show all posts
Showing posts with label Anthropic Principle. Show all posts

Monday, 28 October 2024

Do we make reality?

 I’ve read 2 articles, one in New Scientist (12 Oct 2024) and one in Philosophy Now (Issue 164, Oct/Nov 2024), which, on the surface, seem unrelated, yet both deal with human exceptionalism (my term) in the context of evolution and the cosmos at large.
 
Staring with New Scientist, there is an interview with theoretical physicist, Daniele Oriti, under the heading, “We have to embrace the fact that we make reality” (quotation marks in the original). In some respects, this continues on with themes I raised in my last post, but with different emphases.
 
This helps to explain the title of the post, but, even if it’s true, there are degrees of possibilities – it’s not all or nothing. Having said that, Donald Hoffman would argue that it is all or nothing, because, according to him, even ‘space and time don’t exist unperceived’. On the other hand, Oriti’s argument is closer to Paul Davies’ ‘participatory universe’ that I referenced in my last post.
 
Where Oriti and I possibly depart, philosophically speaking, is that he calls the idea of an independent reality to us ‘observers’, “naïve realism”. He acknowledges that this is ‘provocative’, but like many provocative ideas it provides food-for-thought. Firstly, I will delineate how his position differs from Hoffman’s, even though he never mentions Hoffman, but I think it’s important.
 
Both Oriti and Hoffman argue that there seems to be something even more fundamental than space and time, and there is even a recent YouTube video where Hoffman claims that he’s shown mathematically that consciousness produces the mathematical components that give rise to spacetime; he has published a paper on this (which I haven’t read). But, in both cases (by Hoffman and Oriti), the something ‘more fundamental’ is mathematical, and one needs to be careful about reifying mathematical expressions, which I once discussed with physicist, Mark John Fernee (Qld University).
 
The main issue I have with Hoffman’s approach is that space-time is dependent on conscious agents creating it, whereas, from my perspective and that of most scientists (although I’m not a scientist), space and time exists external to the mind. There is an exception, of course, and that is when we dream.
 
If I was to meet Hoffman, I would ask him if he’s heard of proprioception, which I’m sure he has. I describe it as the 6th sense we are mostly unaware of, but which we couldn’t live without. Actually, we could, but with great difficulty. Proprioception is the sense that tells us where our body extremities are in space, independently of sight and touch. Why would we need it, if space is created by us? On the other hand, Hoffman talks about a ‘H sapiens interface’, which he likens to ‘desktop icons on a computer screen’. So, somehow our proprioception relates to a ‘spacetime interface’ (his term) that doesn’t exist outside the mind.
 
A detour, but relevant, because space is something we inhabit, along with the rest of the Universe, and so is time. In relativity theory there is absolute space-time, as opposed to absolute space and time separately. It’s called the fabric of the universe, which is more than a metaphor. As Viktor Toth points out, even QFT seems to work ‘just fine’ with spacetime as its background.
 
We can do quantum field theory just fine on the curved spacetime background of general relativity.

 
[However] what we have so far been unable to do in a convincing manner is turn gravity itself into a quantum field theory.
 
And this is where Oriti argues we need to find something deeper. To quote:
 
Modern approaches to quantum gravity say that space-time emerges from something deeper – and this could offer a new foundation for physical laws.
 
He elaborates: I work with quantum gravity models in which you don’t start with a space-time geometry, but from more abstract “atomic” objects described in purely mathematical language. (Quotation marks in the original.)
 
And this is the nub of the argument: all our theories are mathematical models and none of them are complete, in as much as they all have limitations. If one looks at the history of physics, we have uncovered new ‘laws’ and new ‘models’ when we’ve looked beyond the limitations of an existing theory. And some mathematical models even turned out to be incorrect, despite giving answers to what was ‘known’ at the time. The best example being Ptolemy’s Earth-centric model of the solar system. Whether string theory falls into the same category, only future historians will know.
 
In addition, different models work at different scales. As someone pointed out (Mile Gu at the University of Queensland), mathematical models of phenomena at one scale are different to mathematical models at an underlying scale. He gave the example of magnetism, demonstrating that mathematical modelling of the magnetic forces in iron could not predict the pattern of atoms in a 3D lattice as one might expect. In other words, there should be a causal link between individual atoms and the overall effect, but it could not be determined mathematically. To quote Gu: “We were able to find a number of properties that were simply decoupled from the fundamental interactions.” Furthermore, “This result shows that some of the models scientists use to simulate physical systems have properties that cannot be linked to the behaviour of their parts.”
 
This makes me sceptical that we will find an overriding mathematical model that will entail the Universe at all scales, which is what theories of quantum gravity attempt to do. One of the issues that some people raise is that a feature of QM is superposition, and the superposition of a gravitational field seems inherently problematic.
 
Personally, I think superposition only makes sense if it’s describing something that is yet to happen, which is why I agree with Freeman Dyson that QM can only describe the future, which is why it only gives us probabilities.
 
Also, in quantum cosmology, time disappears (according to Paul Davies, among others) and this makes sense (to me), if it’s attempting to describe the entire universe into the future. John Barrow once made a similar point, albeit more eruditely.
 
Getting off track, but one of the points that Oriti makes is whether the laws and the mathematics that describes them are epistemic or ontic. In other words, are they reality or just descriptions of reality. I think it gets blurred, because while they are epistemic by design, there is still an ontology that exists without them, whereas Oriti calls that ‘naïve realism’. He contends that reality doesn’t exist independently of us. This is where I always cite Kant: that we may never know the ‘thing-in-itself,’ but only our perception of it. Where I diverge from Kant is that the mathematical models are part of our perception. Where I depart from Oriti is that I argue there is a reality independently of us.
 
Both QM and relativity theory are observer-dependent, which means they could both be describing an underlying reality that continually eludes us. Whereas Oriti argues that ‘reality is made by our models, not just described by them’, which would make it subjective.
 
As I pointed out in my last post, there is an epistemological loop, whereby the Universe created the means to understand itself, through us. Whether there is also an ontological loop as both Davies and Oriti infer, is another matter: do we determine reality through our quantum mechanical observations? I will park that while I elaborate on the epistemic loop.
 
And this finally brings me to the article in Philosophy Now by James Miles titled, We’re as Smart as the Universe gets. He argues that, from an evolutionary perspective, there is a one-in-one-billion possibility that a species with our cognitive abilities could arise by natural selection, and there is no logical reason why we would evolve further, from an evolutionary standpoint. I have touched on this before, where I pointed out that our cultural evolution has overtaken our biological evolution and that would also happen to any other potential species in the Universe who developed cognitive abilities to the same level. Dawkins coined the term, ‘meme’, to describe cultural traits that have ‘survived’, which now, of course, has currency on social media way beyond its original intention. Basically, Dawkins saw memes as analogous to genes, which get selected; not by a natural process but by a cultural process.
 
I’ve argued elsewhere that mathematical theorems and scientific theories are not inherently memetic. This is because they are chosen because they are successful, whereas memes are successful because they are chosen. Nevertheless, such theorems and theories only exist because a culture has developed over millennia which explores them and builds on them.
 
Miles talks about ‘the high intelligence paradox’, which he associates with Darwin’s ‘highest and most interesting problem’. He then discusses the inherent selection advantage of co-operation, not to mention specialisation. He talks about the role that language has played, which is arguably what really separates us from other species. I’ve argued that it’s our inherent ability to nest concepts within concepts ad-infinitum (which is most obvious in our facility for language, like I’m doing now) that allows us to, not only tell stories, compose symphonies, explore an abstract mathematical landscape, but build motor cars, aeroplanes and fly men to the moon. Are we the only species in the Universe with this super-power? I don’t know, but it’s possible.
 
There are 2 quotes I keep returning to:
 
The most incomprehensible thing about the Universe is that it’s comprehensible. (Einstein)
 
The Universe gave rise to consciousness and consciousness gives meaning to the Universe.
(Wheeler)
 
I haven’t elaborated, but Miles makes the point, while referencing historical antecedents, that there appears no evolutionary 'reason’ that a species should make this ‘one-in-one-billion transition’ (his nomenclature). Yet, without this transition, the Universe would have no meaning that could be comprehended. As I say, that’s the epistemic loop.
 
As for an ontic loop, that is harder to argue. Photons exist in zero time, which is why I contend they are always in the future of whatever they interact with, even if they were generated in the CMBR some 13.5 billion years ago. So how do we resolve that paradox? I don’t know, but maybe that’s the link that Davies and Oriti are talking about, though neither of them mention it. But here’s the thing: when you do detect such a photon (for which time is zero) you instantaneously ‘see’ back to 380,000 years after the Universe’s birth.





Saturday, 12 October 2024

Freedom of the will is requisite for all other freedoms

 I’ve recently read 2 really good books on consciousness and the mind, as well as watch countless YouTube videos on the topic, but the title of this post reflects the endpoint for me. Consciousness has evolved, so for most of the Universe’s history, it didn’t exist, yet without it, the Universe has no meaning and no purpose. Even using the word, purpose, in this context, is anathema to many scientists and philosophers, because it hints at teleology. In fact, Paul Davies raises that very point in one of the many video conversations he has with Robert Lawrence Kuhn in the excellent series, Closer to Truth.
 
Davies is an advocate of a cosmic-scale ‘loop’, whereby QM provides a backwards-in-time connection which can only be determined by a conscious ‘observer’. This is contentious, of course, though not his original idea – it came from John Wheeler. As Davies points out, Stephen Hawking was also an advocate, premised on the idea that there are a number of alternative histories, as per Feynman’s ‘sum-over-histories’ methodology, but only one becomes reality when an ‘observation’ is made. I won’t elaborate, as I’ve discussed it elsewhere, when I reviewed Hawking’s book, The Grand Design.
 
In the same conversation with Kuhn, Davies emphasises the fact that the Universe created the means to understand itself, through us, and quotes Einstein: The most incomprehensible thing about the Universe is that it’s comprehensible. Of course, I’ve made the exact same point many times, and like myself, Davies makes the point that this is only possible because of the medium of mathematics.
 
Now, I know I appear to have gone down a rabbit hole, but it’s all relevant to my viewpoint. Consciousness appears to have a role, arguably a necessary one, in the self-realisation of the Universe – without it, the Universe may as well not exist. To quote Wheeler: The universe gave rise to consciousness and consciousness gives meaning to the Universe.
 
Scientists, of all stripes, appear to avoid any metaphysical aspect of consciousness, but I think it’s unavoidable. One of the books I cite in my introduction is Philip Ball’s The Book of Minds; How to Understand Ourselves and Other Beings; from Animals to Aliens. It’s as ambitious as the title suggests, and with 450 pages, it’s quite a read. I’ve read and reviewed a previous book by Ball, Beyond Weird (about quantum mechanics), which is equally as erudite and thought-provoking as this one. Ball is a ‘physicalist’, as virtually all scientists are (though he’s more open-minded than most), but I tend to agree with Raymond Tallis that, despite what people claim, consciousness is still ‘unexplained’ and might remain so for some time, if not forever.
 
I like an idea that I first encountered in Douglas Hofstadter’s seminal tome, Godel, Escher, Bach; an Eternal Golden Braid, that consciousness is effectively a loop, at what one might call the local level. By which I mean it’s confined to a particular body. It’s created within that body but then it has a causal agency all of its own. Not everyone agrees with that. Many argue that consciousness cannot of itself ‘cause’ anything, but Ball is one of those who begs to differ, and so do I. It’s what free will is all about, which finally gets us back to the subject of this post.
 
Like me, Ball prefers to use the word ‘agency’ over free will. But he introduces the term, ‘volitional decision-making’ and gives it the following context:

I believe that the only meaningful notion of free will – and it is one that seems to me to satisfy all reasonable demands traditionally made of it – is one in which volitional decision-making can be shown to happen according to the definition I give above: in short, that the mind operates as an autonomous source of behaviour and control. It is this, I suspect, that most people have vaguely in mind when speaking of free will: the sense that we are the authors of our actions and that we have some say in what happens to us. (My emphasis)

And, in a roundabout way, this brings me to the point alluded to in the title of this post: our freedoms are constrained by our environment and our circumstances. We all wish to be ‘authors of our actions’ and ‘have some say in what happens to us’, but that varies from person to person, dependent on ‘external’ factors.

Writing stories, believe it or not, had a profound influence on how I perceive free will, because a story, by design, is an interaction between character and plot. In fact, I claim they are 2 sides of the same coin – each character has their own subplot, and as they interact, their storylines intertwine. This describes my approach to writing fiction in a nutshell. The character and plot represent, respectively, the internal and external journey of the story. The journey metaphor is apt, because a story always has the dimension of time, which is visceral, and is one of the essential elements that separates fiction from non-fiction. To stretch the analogy, character represents free will and plot represents fate. Therefore, I tell aspiring writers the importance of giving their characters free will.

A detour, but not irrelevant. I read an article in Philosophy Now sometime back, about people who can escape their circumstances, and it’s the subject of a lot of biographies as well as fiction. We in the West live in a very privileged time whereby many of us can aspire to, and attain, the life that we dream about. I remember at the time I left school, following a less than ideal childhood, feeling I had little control over my life. I was a fatalist in that I thought that whatever happened was dependent on fate and not on my actions (I literally used to attribute everything to fate). I later realised that this is a state-of-mind that many people have who are not happy with their circumstances and feel impotent to change them.

The thing is that it takes a fundamental belief in free will to rise above that and take advantage of what comes your way. No one who has made that journey will accept the self-denial that free will is an illusion and therefore they have no control over their destiny.

I will provide another quote from Ball that is more in line with my own thinking:

…minds are an autonomous part of what causes the future to unfold. This is different to the common view of free will in which the world somehow offers alternative outcomes and the wilful mind selects between them. Alternative outcomes – different, counterfactual realities – are not real, but metaphysical: they can never be observed. When we make a choice, we aren’t selecting between various possible futures, but between various imagined futures, as represented in the mind’s internal model of the world…
(emphasis in the original)

And this highlights a point I’ve made before: that it’s the imagination which plays the key role in free will. I’ve argued that imagination is one of the facilities of a conscious mind that separates us (and other creatures) from AI. Now AI can also demonstrate agency, and, in a game of chess, for example, it will ‘select’ from a number of possible ‘moves’ based on certain criteria. But there are fundamental differences. For a start, the AI doesn’t visualise what it’s doing; it’s following a set of highly constrained rules, within which it can select from a number of options, one of which will be the optimal solution. Its inherent advantage over a human player isn’t just its speed but its ability to compare a number of possibilities that are impossible for the human mind to contemplate simultaneously.

The other book I read was Being You; A New Science of Consciousness by Anil Seth. I came across Seth when I did an online course on consciousness through New Scientist, during COVID lockdowns. To be honest, his book didn’t tell me a lot that I didn’t already know. For example, that the world, we all see and think exists ‘out there’, is actually a model of reality created within our heads. He also emphasises how the brain is a ‘prediction-making’ organ rather than a purely receptive one. Seth mentions that it uses a Bayesian model (which I also knew about previously), whereby it updates its prediction based on new sensory data. Not surprisingly, Seth describes all this in far more detail and erudition than I can muster.

Ball, Seth and I all seem to agree that while AI will become better at mimicking the human mind, this doesn’t necessarily mean it will attain consciousness. Applications software, ChatGPT (for example), despite appearances, does not ‘think’ the way we do, and actually does not ‘understand’ what it’s talking or writing about. I’ve written on this before, so I won’t elaborate.

Seth contends that the ‘mystery’ of consciousness will disappear in the same way that the 'mystery of life’ has effectively become a non-issue. What he means is that we no longer believe that there is some ‘elan vital’ or ‘life force’, which distinguishes living from non-living matter. And he’s right, in as much as the chemical origins of life are less mysterious than they once were, even though abiogenesis is still not fully understood.

By analogy, the concept of a soul has also lost a lot of its cogency, following the scientific revolution. Seth seems to associate the soul with what he calls ‘spooky free will’ (without mentioning the word, soul), but he’s obviously putting ‘spooky free will’ in the same category as ‘elan vital’, which makes his analogy and associated argument consistent. He then says:

Once spooky free will is out of the picture, it is easy to see that the debate over determinism doesn’t matter at all. There’s no longer any need to allow any non-deterministic elbow room for it to intervene. From the perspective of free will as a perceptual experience, there is simply no need for any disruption to the causal flow of physical events. (My emphasis)

Seth differs from Ball (and myself) in that he doesn’t seem to believe that something ‘immaterial’ like consciousness can affect the physical world. To quote:

But experiences of volition do not reveal the existence of an immaterial self with causal power over physical events.

Therefore, free will is purely a ‘perceptual experience’. There is a problem with this view that Ball himself raises. If free will is simply the mind observing effects it can’t cause, but with the illusion that it can, then its role is redundant to say the least. This is a view that Sabine Hossenfelder has also expressed: that we are merely an ‘observer’ of what we are thinking.

Your brain is running a calculation, and while it is going on you do not know the outcome of that calculation. So the impression of free will comes from our ‘awareness’ that we think about what we do, along with our inability to predict the result of what we are thinking.

Ball makes the point that we only have to look at all the material manifestations of human intellectual achievements that are evident everywhere we’ve been. And this brings me back to the loop concept I alluded to earlier. Not only does consciousness create a ‘local’ loop, whereby it has a causal effect on the body it inhabits but also on the external world to that body. This is stating the obvious, except, as I’ve mentioned elsewhere, it’s possible that one could interact with the external world as an automaton, with no conscious awareness of it. The difference is the role of imagination, which I keep coming back to. All the material manifestations of our intellect are arguably a result of imagination.

One insight I gained from Ball, which goes slightly off-topic, is evidence that bees have an internal map of their environment, which is why the dance they perform on returning to the hive can be ‘understood’ by other bees. We’ve learned this by interfering in their behaviour. What I find interesting is that this may have been the original reason that consciousness evolved into the form that we experience it. In other words, we all create an internal world that reflects the external world so realistically, that we think it is the actual world. I believe that this also distinguishes us (and bees) from AI. An AI can use GPS to navigate its way through the physical world, as well as other so-called sensory data, from radar or infra-red sensors or whatever, but it doesn’t create an experience of that world inside itself.

The human mind seems to be able to access an abstract world, which we do when we read or watch a story, or even write one, as I have done. I can understand how Plato took this idea to its logical extreme: that there is an abstract world, of which the one we inhabit is but a facsimile (though he used different terminology). No one believes that today – except, there is a remnant of Plato’s abstract world that persists, which is mathematics. Many mathematicians and physicists (though not all) treat mathematics as a neverending landscape that humans have the unique capacity to explore and comprehend. This, of course, brings me back to Davies’ philosophical ruminations that I opened this discussion with. And as he, and others (like Einstein, Feynman, Wigner, Penrose, to name but a few) have pointed out: the Universe itself seems to follow specific laws that are intrinsically mathematical and which we are continually discovering.

And this closes another loop: that the Universe created the means to comprehend itself, using the medium of mathematics, without which, it has no meaning. Of purpose, we can only conjecture.

Saturday, 7 September 2024

Science and religion meet at the boundary of humanity’s ignorance

 I watched a YouTube debate (90 mins) between Sir Roger Penrose and William Lane Craig, and, if I’m honest, I found it a bit frustrating because I wish I was debating Craig instead of Penrose. I also think it would have been more interesting if Craig debated someone like Paul Davies, who is more philosophically inclined than Penrose, even though Penrose is more successful as a scientist, and as a physicist, in particular.
 
But it was set up as an atheist versus theist debate between 2 well known personalities, who were mutually respectful and where there was no animosity evident at all. I confess to having my own biases, which would be obvious to any regular reader of this blog. I admit to finding Craig arrogant and a bit smug in his demeanour, but to be fair, he was on his best behaviour, and perhaps he’s matured (or perhaps I have) or perhaps he adapts to whoever he’s facing. When I call it a debate, it wasn’t very formal and there wasn’t even a nominated topic. I felt the facilitator or mediator had his own biases, but I admit it would be hard to find someone who didn’t.
 
Penrose started with his 3 worlds philosophy of the physical, the mental and the abstract, which has long appealed to me, though most scientists and many philosophers would contend that the categorisation is unnecessary, and that everything is physical at base. Penrose proposed that they present 3 mysteries, though the mysteries are inherent in the connections between them rather than the categories themselves. This became the starting point of the discussion.
 
Craig argued that the overriding component must surely be ‘mind’, whereas Penrose argued that it should be the abstract world, specifically mathematics, which is the position of mathematical Platonists (including myself). Craig pointed out that mathematics can’t ‘create’ the physical, (which is true) but a mind could. As the mediator pointed out (as if it wasn’t obvious) said mind could be God. And this more or less set the course for the remainder of the discussion, with a detour to Penrose’s CCC theory (Conformal Cyclic Cosmology).
 
I actually thought that this was Craig’s best argument, and I’ve written about it myself, in answer to a question on Quora: Did math create the Universe? The answer is no, nevertheless I contend that mathematics is a prerequisite for the Universe to exist, as the laws that allowed the Universe to evolve, in all its facets, are mathematical in nature. Note that this doesn’t rule out a God.
 
Where I would challenge Craig, and where I’d deviate from Penrose, is that we have no cognisance of who this God is or even what ‘It’ could be. Could not this God be the laws of the Universe themselves? Penrose struggled with this aspect of the argument, because, from a scientific perspective, it doesn’t tell us anything that we can either confirm or falsify. I know from previous debates that Craig has had, that he would see this as a win. A scientist can’t refute his God’s existence, nor can they propose an alternative, therefore it’s his point by default.
 
This eventually led to a discussion on the ‘fine-tuning’ of the Universe, which in the case of entropy, is what led Penrose to formulate his CCC model of the Universe. Of course, the standard alternative is the multiverse and the anthropic principle, which, as Penrose points out, is also applicable to his CCC model, where you have an infinite sequence of universes as opposed to an infinity of simultaneous ones, which is the orthodox response among cosmologists.
 
This is where I would have liked to have seen Paul Davies respond, because he’s an advocate of John Wheeler’s so-called ‘participatory Universe’, which is effectively the ‘strong anthropic principle’ as opposed to the ‘weak anthropic principle’. The weak anthropic principle basically says that ‘observers’ (meaning us) can only exist in a universe that allows observers to exist – a tautology. Whereas the strong anthropic principle effectively contends that the emergence of observers is a necessary condition for the Universe to exist (the observers don’t have to be human). Basically, Wheeler was an advocate of a cosmic, acausal (backward-in-time) link from conscious observers to the birth of the Universe. I admit this appeals to me, but as Craig would expound, it’s a purely metaphysical argument, and so is the argument for God.
 
The other possibility that is very rarely expressed, is that God is the end result of the Universe rather than its progenitor. In other words, the ‘mind’ that Craig expounded upon is a consequence of all of us. This aligns more closely with the Hindu concept of Atman or a Buddhist concept of collective karma – we get the God we deserve. Erwin Schrodinger, who studied the Upanishads, discusses Atman as a pluralistic ‘mind’ (in What is Life?). My point would be that the Judea-Christian-Islamic God does not have a monopoly on Craig’s overriding ‘mind’ concept.
 
A recurring theme on this blog is that there will always be mysteries – we can never know everything – and it’s an unspoken certitude that there will forever be knowledge beyond our cognition. The problem that scientists sometimes have, but are reluctant to admit, is that we can’t explain everything, even though we keep explaining more by the generation. And the problem that theologians sometimes have is that our inherent ignorance is neither ‘proof’ nor ‘evidence’ that there is a ‘creator’ God.
 
I’ve argued elsewhere that a belief in God is purely a subjective and emotional concept, which one then rationalises with either cultural references or as an ultimate explanation for our existence.


Addendum: I like this quote, albeit out of context, from Spinoza:: "The sum of the natural and physical laws of the universe and certainly not an individual entity or creator".


Saturday, 29 June 2024

Feeling is fundamental

 I’m not sure I’ve ever had an original idea, but I sometimes raise one that no one else seems to talk about. And this is one of them: I contend that the primary, essential attribute of consciousness is to be able to feel, and the ability to comprehend is a secondary attribute.
 
I don’t even mind if this contentious idea triggers debate, but we tend to always discuss consciousness in the context of human consciousness, where we metaphorically talk about making decisions based on the ‘head’ or the ‘heart’. I’m unsure of the origin of this dichotomy, but there is an inference that our emotional and rational ‘centres’ (for want of a better word) have different loci (effectively, different locations). No one believes that, of course, but possibly people once did. The thing is that we are all aware that sometimes our emotional self and rational self can be in conflict. This is already going down a path I didn’t intend, so I may return at a later point.
 
There is some debate about whether insects have consciousness, but I believe they do because they demonstrate behaviours associated with fear and desire, be it for sustenance or company. In other respects, I think they behave like automatons. Colonies of ants and bees can build a nest without a blueprint except the one that apparently exists in their DNA. Spiders build webs and birds build nests, but they don’t do it the way we would – it’s all done organically, as if they have a model in their brain that they can follow; we actually don’t know.
 
So I think the original role of consciousness in evolutionary terms was to feel, concordant with abilities to act on those feelings. I don’t believe plants can feel, but they’d have very limited ability to act on them, even if they could. They can communicate chemically, and generally rely on the animal kingdom to propagate, which is why a global threat to bee populations is very serious indeed.
 
So, in evolutionary terms, I think feeling came before cognitive abilities – a point I’ve made before. It’s one of the reasons that I think AI will never be sentient – a viewpoint not shared by most scientists and philosophers, from what I’ve read.  AI is all about cognitive abilities; specifically, the ability to acquire knowledge and then deploy it to solve problems. Some argue that by programming biases into the AI, we will be simulating emotions. I’ve explored this notion in my own sci-fi, where I’ve added so-called ‘attachment programming’ to an AI to simulate loyalty. This is fiction, remember, but it seems plausible.
 
Psychological studies have revealed that we need an emotive component to behave rationally, which seems counter-intuitive. But would we really prefer if everyone was a zombie or a psychopath, with no ability to empathise or show compassion. We see enough of this already. As I’ve pointed out before, in any ingroup-outgroup scenario, totally rational individuals can become totally irrational. We’ve all observed this, possibly actively participated.
 
An oft made point (by me) that I feel is not given enough consideration is the fact that without consciousness, the universe might as well not exist. I agree with Paul Davies (who does espouse something similar) that the universe’s ability to be self-aware, would seem to be a necessary condition for its existence (my wording, not his). I recently read a stimulating essay in the latest edition of Philosophy Now (Issue 162, June/July 2024) titled enigmatically, Significance, by Ruben David Azevedo, a ‘Portuguese philosophy and social sciences teacher’. His self-described intent is to ‘Tell us why, in a limitless universe, we’re not insignificant’. In fact, that was the trigger for this post. He makes the point (that I’ve made elsewhere myself), that in both time and space, we couldn’t be more insignificant, which leads many scientists and philosophers to see us as a freakish by-product of an otherwise purposeless universe. A perspective that Davies has coined ‘the absurd universe’. In light of this, it’s worth reading Azevedo’s conclusion:
 
In sum, humans are neither insignificant nor negligible in this mind-blowing universe. No living being is. Our smallness and apparent peripherality are far from being measures of our insignificance. Instead, it may well be the case that we represent the apex of cosmic evolution, for we have this absolute evident and at the same time mysterious ability called consciousness to know both ourselves and the universe.
 
I’m not averse to the idea that there is a cosmic role for consciousness. I like John Wheeler’s obvious yet pertinent observation:
 
The Universe gave rise to consciousness, and consciousness gives meaning to the Universe.

 
And this is my point: without consciousness, the Universe would have no meaning. And getting back to the title of this essay, we give the Universe feeling. In fact, I’d say that the ability to feel is more significant than the ability to know or comprehend.
 
Think about the role of art in all its manifestations, and how it’s totally dependent on the ability to feel. In some respects, I consider AI-generated art a perversion, because any feeling we have for its products is of our own making, not the AI’s.
 
I’m one of those weird people who can even find beauty in mathematics, while acknowledging only a limited ability to pursue it. It’s extraordinary that I can find beauty in a symphony, or a well-written story, or the relationship between prime numbers and Riemann’s Zeta function.


Addendum: I realised I can’t leave this topic without briefly discussing the biochemical role in emotional responses and behaviours. I’m thinking of the brain’s drugs-of-choice like serotonin, dopamine, oxytocin and endorphins. Some may argue that these natural ‘messengers’ are all that’s required to explain emotions. However, there are other drugs, like alcohol and caffeine (arguably the most common) that also affect us emotionally, sometimes to our detriment. My point being that the former are nature’s target-specific mechanisms to influence the way we feel, without actually being the genesis of feelings per se.

Saturday, 30 October 2021

Natural laws; a misnomer?

I’ve referenced Raymond Tallis before, and I have to say up front that I have a lot of respect for his obvious erudition and the breadth of his intellectual discourse. He is an author and regular columnist in Philosophy Now, with a background in neuroscience. I always read his column, because he’s erudite and provocative. In Issue 144 (June/July 2021) he wrote an essay titled, The Laws of Nature. He didn’t use the term ‘misnomer’ anywhere, but that was the gist of his argument.


Tallis and I have a fundamental disagreement concerning the philosophy of science; and physics, in particular. This will become obvious as I expound on his article. He starts by pointing out how the word ‘law’ has theological connotations, as well as cultural ones. It’s a word normally associated with humanmade rules or edicts, which are necessary just so we can live together. An obvious one is what side of the road to drive on, otherwise we would have carnage and road-rage would be the least of our worries.

 

Science evolved out of a religious epistemology (I know that’s an oxymoron), but the pioneers of physics, like Galileo, Kepler and Newton, were all religious people and, from their perspective, they were uncovering ‘God’s laws’. This even extended to Einstein, who often referred to ‘God’ in a metaphorical sense, and saw himself and his contemporary physicists as uncovering the ‘Old One’s Secrets’. Even Stephen Hawking, a self-declared atheist, coined the phrase, ‘The Mind of God’.

 

So I agree with Tallis on this point that the use of the word, law, in this context, is misleading and carries the baggage of an earlier time, going back to the ancient Greeks (and other cultures) that human affairs were contingent on the whims of the Gods.

 

So Tallis searched around for an alternative term, and came up with ‘habits’, whilst admitting that it’s not ideal and that ‘it will have to punch above its usual weight’. But I think Tallis chose the word because, in human terms, ‘habit’ means something we acquire out of familiarity, and may or may not be the best method, or approach, to a specific situation. The idea that nature follows ‘habits’ implies there is no rhyme or reason behind their efficacy or apparent success. Even the word, 'success', is loaded, yet I think it subverts his point, because they are ‘successful’ in the sense that they ultimately produced a lifeform that can cognise them (more on that below).

 

Tallis makes the point that in nature ‘things just happen’, and the ‘laws’ are our attempt to ‘explain’ them. But, extending this line of thought, he suggests that actually we invent laws to ‘describe’ what nature does, which is why ‘habits’ is a better term.

 

The expectation of finding an explanation of nature’s regularity is the result of extrapolating to the whole of things the belief that every individual thing happens for a reason – that nothing ‘just happens’.

 

The word ‘regularity’ is apt and is one that physicists often use, because that is what we have learned about nature on all scales, and it is why it is predictable to the degree that it is. There is, of course, a missing element in all this, and that is the role of mathematics. I’m not surprised that Tallis doesn’t mention the word (even once as best I can recall), because he believes that physicists have a tendency to ‘mistake the map for the territory’ when they invoke mathematics as having a pivotal role in our epistemology. In another essay, he once argued that the only reason mathematics has a place in physics is because we need to measure things, or quantify them, in order to make predictions that can be verified. However, the very laws (or habits) that are the subject of his essay, are completely dependent on mathematics to be comprehensible at all.

 

In closing, Tallis makes a very good argument: there is a gap between the ‘habits’ that nature follows and the humanmade ‘laws’ in our science that we use to describe these habits. He makes the point that we are forever trying to close this gap as we discover more about nature’s habits. And he’s right, because it appears that no matter how much we learn, there are always more of nature’s secrets to decipher. Every theory we’ve devised thus far has limits and we’ve even reached a point where our theory for the very large appears irreconcilable (mathematically) with our theory for the very small. But the point I’d make is that mathematics not only gives us our best description of reality, it also delineates the limitations of any particular theory. Consequently, I contend there will always be a gap.

 

Physicists say that the best we can do is provide a model and that model is always mathematical. Hawking made this point in his book, The Grand Design. So the model describes the laws, or habits, to the extent that we understand them at the time, and that it gets updated as we learn more.

 

Tallis mentions the well-known example of Newton’s ‘laws’ being surpassed by Einstein’s. But here’s the thing: the ‘inverse square law’ still applies and that’s not surprising, as it’s dependent on the Universe existing in 3 spatial dimensions. So we not only have a ‘law’ that carries over, but we have an explanation for it. But here’s another thing: the 3 spatial dimensions in combination with the single dimension of time is probably the only combination of dimensions that would allow for a universe to be habitable. Cosmologist and Fellow of the Royal Society, John D Barrow, expounds on this in some detail in his book, The Constants of Nature. (As a side note, planets can only remain in stable orbits over astronomical time periods in 3 dimensions of space.) So where I depart philosophically from Tallis is that there are fundamental parameters in the Universe’s very structure that determine the consequences of something existing that can understand that structure. 

 

Nevertheless, I agree with Tallis to the extent that I think the term, 'law', is a misnomer, and I think a better word is ‘principle’. If one goes back to Einstein’s theory of gravity replacing Newton’s, it introduces a fundamental principle called the 'principle of least action', which I think was pointed out by Emmy Noether, not Einstein. As it turns out, the principle of least action also ‘explains’ or ‘describes’ optical refraction, as well as forming the basis of Richard Feynman’s path integral method for QED (quantum electrodynamics). The principle of least action, naturally, has a mathematical formulation called the Lagrangian.

 

Speaking of Emmy Noether, she derived a famous mathematical theorem (called Noether’s theorem) that is a fundamental ‘principle’ in physics, describing the intrinsic relationship between symmetries and conservation laws. It’s hard to avoid the term, 'law', in this context because it appears to be truly fundamental based on everything we know.

 

So, is this a case of confusing the map with the terrain? Maybe. The Universe doesn’t exist in numbers – it exists as a process constrained by critical parameters, all of which can only be deciphered by mathematics. To give just one example: Planck’s constant, h, determines the size of atoms which form the basis of everything you see and touch.



Other relevant posts: the-lagrangian-possibly-most.html


                                   the-universes-natural-units_9.html


Wednesday, 26 August 2020

Did the Universe see us coming?

 I recently read The Grand Design by Stephen Hawking (2010), co-authored by Leonard Mlodinow, who gets ‘second billing’ (with much smaller font) on the cover, so one is unsure what his contribution was. Having said that, other titles listed by Mlodinow (Euclid’s Window and Feynman’s Rainbow) make me want to search him out. But the prose style does appear to be quintessential Hawking, with liberal lashings of one-liners that we’ve come to know him for. Also, I think one can confidently assume that everything in the book has Hawking’s imprimatur.

 

I found this book so thought-provoking that, on finishing it, I went back to the beginning, so I could re-read his earlier chapters in the context of his later ones. On the very first page he says, rather provocatively, ‘philosophy is dead’. He then spends the rest of the book giving his account of ‘life, the universe and everything’ (which, in one of his early quips, ‘is not 42’). He ends the first chapter (introduction, really) with 3 questions:

 

1)    Why is there something rather than nothing?

2)    Why do we exist?

3)    Why this particular set of laws and not some other?

It’s hard to get more philosophical than this.

 

I haven’t read everything he’s written, but I’m familiar with his ideas and achievements, as well as some of his philosophy and personal prejudices. ‘Prejudice’ is a word that is usually used pejoratively, but I use it in the same sense I use it on myself, regarding my ‘pet’ theories or beliefs. For example, one of my prejudices (contrary to accepted philosophical wisdom) is that AI will not achieve consciousness.

 

Nevertheless, Hawking expresses some ideas that I would not have expected of him. His chapter titled, What is Reality? is where he first challenges the accepted wisdom of the general populace. He argues, rather convincingly, that there are only ‘models of reality’, including the ones we all create inside our heads. He doesn’t say there is no objective reality, but he says that, if we have 2 or more ‘models of reality’ that agree with the evidence, then one cannot say that one is ‘more true’ than another.

 

For example, he says, ‘although it is not uncommon for people to say that Copernicus proved Ptolemy wrong, that is not true’. He elaborates: ‘one can use either picture as a model of the universe, for our observations of the heavens can be explained by assuming either the earth or the sun is at rest’.

 

However, as I’ve pointed out in other posts, either the Sun goes around the Earth or the Earth goes around the Sun. It has to be one or the other, so one of those models is wrong.

 

He argues that we only ‘believe’ there is an ‘objective reality’ because it’s the easiest model to live with. For example, we don’t know whether an object disappears or not when go into another room, nevertheless he cites Hume, ‘who wrote that although we have no rational grounds for believing in an objective reality, we also have no choice but to act as if it’s true’.

 

I’ve written about this before. It’s a well known conundrum (in philosophy) that you don’t know if you’re a ‘brain-in-a-vat’. But I don’t know of a single philosopher who thinks that they are. The proof is in dreams. We all have dreams that we can’t distinguish from reality until we wake up. Hawking also referenced dreams as an example of a ‘reality’ that doesn’t exist objectively. So dreams are completely solipsistic to the extent that all our senses will play along, including taste.

 

Considering Hawking’s confessed aversion to philosophy, this is all very Kantian. We can never know the thing-in-itself. Kant even argued that time and space are a priori constructs of the mind. And if we return to the ‘model of reality’ that exists in your mind: if it didn’t accurately reflect the external objective reality outside your mind, the consequences would be fatal. To me, this is evidence that there is an objective reality independent of one’s mind - it can kill you. However, if you die in a dream, you just wake up.

 

Of course, this all leads to subatomic physics, where the only models of reality are mathematical. But even in this realm, we rely on predictions made by these models to determine if they reflect an objective reality that we can’t see. To return to Kant, the thing-in-itself is dependent on the scale at which we ‘observe’ it. So, at the subatomic scale, our observations may be tracks of particles captured in images, not what we see with the naked eye. The same can be said on the cosmic scale; observations dependent on instruments that may not even be stationed on Earth.

 

To get a different perspective, I recently read an article on ‘reality’ written by Roger Penrose (New Scientist, 16 May 2020) which was updated from one he wrote in 2006. Penrose has no problem with an ‘objective independent reality’, and he goes to some lengths (with examples) to show the extraordinary agreement between our mathematical models and physical reality. 

 

Our mathematical models of physical reality are far from complete, but they provide us with schemes that model reality with great precision – a precision enormously exceeding that of any description free of mathematics.

 

(It should be pointed out that Penrose and Hawking won a joint prize in physics for their work in cosmology.)

 

But Penrose gets to the nub of the issue when he says, ‘...the “reality” that quantum theory seems to be telling us to believe in is so far removed from what we are used to that many quantum theorists would tell us to abandon the very notion of reality’. But then he says in the spirit of an internal dialogue, ‘Where does quantum non-reality leave off and the physical reality that we actually experience begin to take over? Present day quantum theory has no satisfactory answer to this question’. (I try to answer this below.)

 

Hawking spends an entire chapter on this subject, called Alternative Histories. For me, this was the most revealing chapter in his book. He discusses at length Richard Feynman’s ‘sum over histories’ methodology, called QED or quantum electrodynamics. I say methodology instead of theory, because it’s a mathematical method that has proved extraordinarily accurate in concordance with Penrose’s claim above. Feynman compared it to measuring the distance between New York and Seattle (from memory) to within the width dimension of a human hair.

 

Basically, as Hawking expounds, in Feynman’s theory, a quantum particle can take every path imaginable (in the famous double-slit experiment, say) and then he adds them altogether, but because they’re waves, most of them cancel each other out. This leads to the principle of superposition, where a particle can be in 2 places or 2 states at once. However, as soon as it’s ‘observed’ or ‘measured’ it becomes one particle in one state. In fact, according to standard quantum theory, it’s possible for a single photon to be split into 2 paths and be ‘observed’ to interfere with itself, as described in this video. (I've edited this after Wes Hansen from Quora challenged it). I've added a couple of Wes's comments in an addendum below. Personally, I believe 'superposition' is part of the QM description of the future, as alluded to by Freeman Dyson (see  below). So I don't think superposition really occurs.

 

Hawking contends that the ‘alternative histories’ inherent in Feynman’s mathematical method, not only affect the future but also the past. What he is implying is that when an observation is made it determines the past as well as the future. He talks about a ‘top down’ history in lieu of a ‘bottom up’ history, which is the traditional way of looking at things. In other words, cosmological history is one of many ‘alternative histories’ (his terminology) that evolve from QM.

 

This leads to a radically different view of cosmology, and the relation between cause and effect. The histories that contribute to the Feynman sum don’t have an independent existence, but depend on what is being measured. We create history by our observation, rather than history creating us (my emphasis).

 

As it happens, John Wheeler made the exact same contention, and proposed that it could happen on a cosmic scale when we observed light from a distant quasar being ‘gravitationally lensed’ by an intervening galaxy or black hole (refer Davies paper, linked below). Hawking makes specific reference to Wheeler’s conjecture at the end of his chapter. It should be pointed out that Wheeler was a mentor to Feynman, and Feynman even referenced Wheeler’s influence in his Nobel Prize acceptance speech.

 

A contemporary champion of Wheeler’s ideas is Paul Davies, and he even dedicates his book, The Goldilocks Enigma, to Wheeler.

 

Davies wrote a paper which is available on-line, where he describes Wheeler’s idea as the “…participatory universe” in which observers—minds, if you like—are inextricably tied to the concretization of the physical universe emerging from quantum fuzziness over cosmological durations.

 

In the same paper, Davies references and attaches an essay by Freeman Dyson, where he says, “Dyson concludes that a quantum description cannot be applied to past events.”

 

And this leads me back to Penrose’s question: how do we get the ‘reality’ we are familiar with from the mathematically modelled quantum world that strains our credulousness? If Dyson is correct, and the past can only be described by classical physics then QM only describes the future. So how does one reconcile this with Hawking’s alternative histories?

 

I’ve argued elsewhere that the path from the infinitely many paths of Feynman’s theory, is only revealed when an ‘observation’ is made, which is consistent with Hawking’s point, quoted above. But it’s worth quoting Dyson, as well, because Dyson argues that the observer is not the trigger.

 

... the “role of the observer” in quantum mechanics is solely to make the distinction between past and future...

 

What really happens is that the quantum-mechanical description of an event ceases to be meaningful as the observer changes the point of reference from before the event to after it. We do not need a human observer to make quantum mechanics work. All we need is a point of reference, to separate past from future, to separate what has happened from what may happen, to separate facts from probabilities.

 

But, as I’ve pointed out in other posts, consciousness exists in a constant present. The time for ‘us’ is always ‘now’, so the ‘point of reference’, that is key to Dyson’s argument, correlates with the ‘now’ of a conscious observer.

 

We know that ‘decoherence’ is not necessarily dependent on an observer, but dependent on the wave function interacting with ‘classical physics’ objects, like a laboratory apparatus or any ‘macro’ object. Dyson’s distinction between past and future makes sense in this context. Having said that, the interaction could still determine the ‘history’ of the quantum event (like a photon), even it traversed the entire Universe, as in the cosmic background radiation (for example).

 

In Hawking’s subsequent chapters, including one titled, Choosing Our Universe, he invokes the anthropic principle. In fact, there are 2 anthropic principles called the ‘weak’ and the ‘strong’. As Hawking points out, the weak anthropic principle is trivial, because, as I’ve pointed out, it’s a tautology: Only universes that produce observers can be observed.

 

On the other hand, the strong anthropic principle (which Hawking invokes) effectively says, Only universes that produce observers can ‘exist’. One can see that this is consistent with Davies’ ‘participatory universe’.

 

Hawking doesn’t say anything about a ‘participatory universe’, but goes into some detail about the fine-tuning of our universe for life, in particular the ‘miracle’ of how carbon can exist (predicted by Fred Hoyle). There are many such ‘flukes’ in our universe, including the cosmological constant, which Hawking also discusses at some length.

 

Hawking also explains how an entire universe could come into being out of ‘nothing’ because the ‘negative’ gravitational energy cancels all the ‘positive’ matter and radiation energy that we observe (I assume this also includes dark energy and dark matter). Dark energy is really the cosmological constant. Its effect increases with the age of the Universe, because, as the Universe expands, gravitational attraction over cosmological distances decreases while ‘dark energy’ (which repulses) doesn’t. Dark matter explains the stable rotation of galaxies, without which, they’d fly apart.

 

Hawking also describes the Hartle-Hawking model of cosmology (without mentioning James Hartle) whereby he argues that in a QM only universe (at its birth), time was actually a 4th spatial dimension. He calls this the ‘no-boundary’ universe, because, as John Barrow once quipped, ‘Once upon a time, there was no time’. I admit that this ‘model’ appeals to me, because in quantum cosmology, time disappears mathematically.

 

Hawking’s philosophical view is the orthodox one that, if there is a multiverse, then the anthropic principle (weak or strong) ensures that there must be a universe where we can exist. I think there are very good arguments for the multiverse (the cosmological variety, not the QM multiple worlds variety) but I have a prejudice against an infinity of them because then there would be an infinity of me.

 

Hawking is a well known atheist, so, not surprisingly, he provides good arguments against the God hypothesis. There could be a demiurge, but if there is, there is no reason to believe it coincides with any of the Gods of mythology. Every God I know of has cultural ties and that includes the Abrahamic God.

 

For someone who claims that ‘philosophy is dead’, Hawking’s book is surprisingly philosophical and thought-provoking, as all good philosophy should be. In his conclusions, he argues strongly for ‘M theory’, believing it will provide the theory(s) of everything that physicists strive for. M theory, as Hawking acknowledges, requires ‘supersymmetry’, and from what I know and read, there is little or no evidence of it thus far. But I agree with Socrates that every mystery resolved only uncovers more mysteries, which history, thus far, has confirmed over and over.

 

My views have evolved and, along with the ‘strong anthropic principle’, I’m becoming increasingly attracted to Wheeler’s ‘participatory universe’, because the more of its secrets we learn, the more it appears as if ‘the Universe saw us coming’, to paraphrase Freeman Dyson.



Addendum (23Apr2021): Wes Hansen, whom I met on Quora, and who has strong views on this topic, told me outright that he's not a fan of Hawking or Feynman. Not surprisingly, he challenged some of my views and I'm not in a position to say if he's right or wrong. Here are some of his comments:


You know, I would add, the problem with the whole “we create history by observation” thing is, it takes a whole lot of history for light to travel to us from distant galaxies, so it leads to a logical fallacy. Consider:

Suppose we create the past with our observations, then prior to observation the galaxies in the Hubble Deep Fields did not exist. Then where does the light come from? You see, we are actually seeing those galaxies as they existed long ago, some over 10 billion years ago.

We have never observed a single photon interfering with itself, quite the opposite actually: Ian Miller's answer to Can a particle really be in several places at the same time in the subatomic world, or is this just modern mysticism?. This is precisely why I cannot tolerate Hawking or Feynman, it’s absolute nonsense!

Regarding his last point, I think Ian Miller has a point. I don't always agree with Miller, but he has more knowledge on this topic than me. I argue that the superposition, which we infer from the interference pattern, is in the future. The idea of a single photon taking 2 paths and interfering with itself is deduced solely from the interference pattern (see linked video in main text). My view is that superposition doesn't really happen - it's part of the QM description of the future. I admit that I effectively contradicted myself, and I've made an edit to the original post to correct that.


 

Tuesday, 9 January 2018

Why is there something rather than nothing (in 400 words)

This is another ‘Question of the Month’ from Philosophy Now (Issue 123, December 2017 / January 2018). My 8th submission, with 6 from 7 previously published. I think this is my best yet, so I’ll be disappointed if it doesn’t get a guernsey. It depends on the other submissions – after all, it’s a competition and they only select 12 or less.

I’ve written on this topic before in a more lengthy post, but enforced brevity and succinctness sharpens one’s focus.



This is arguably the most fundamental question in philosophy. I once heard a respected philosopher (in a debate) say it was the ‘wrong question’, without proffering a ‘right question’. I thought this was a cop-out, not to mention a not-so-subtle evasion. But there are two major aspects to this question, and most attempted answers only address one. We inhabit a universe we believe to be around 14 billion years old, and proto-human consciousness only existed about 6 million years ago, with homo sapiens arriving on the scene only very recently – roughly 200,000 years ago. But here’s the thing: without a conscious entity to perceive the Universe, there might as well be nothing.

Einstein famously said: “The most incomprehensible thing about the Universe is that it’s comprehensible.” Many scientists, if not most, believe that the Universe and our status within it is a freak accident. Paul Davies in his erudite book, The Goldilocks Enigma, calls this interpretation, the ‘absurd universe’. The standard scientific answer to this enigma is that there are a multitude, possibly an infinite number of universes. If this is the case, then there are an infinite number of you and me. The multiverse hypothesis says that all possibilities are equally valid, which doesn’t explain anything, except to say that the freak accident of our existence can only be understood within an endless sea of all possible existences.

A number of physicists and cosmologists have pointed out that there are constants pertaining to fundamental physical laws that permit complex life forms to evolve. Even small variances in these numbers, either up or down, could have made the Universe lifeless. And as cosmologist, John Barrow, has pointed out, the Universe needs to be of the mind-boggling scale we observe to allow time for complex life - meaning us - to evolve. In light of these deductions, Brandon Carter coined and defined two anthropic principles. The weak anthropic principle says that only a universe that contains observers can be observed (which is a tautology). The strong anthropic principle says that only a universe that permits observers to emerge can exist. To be self-realised, a universe requires consciousness, otherwise it’s effectively non-existent; in the same way that a lost manuscript by Shakespeare would be non-existent.



Postscript: I must say that I find it a touch ironic that the most popular 'scientific' answer to this question is that there is an infinite amount of everything. Which may be right, yet we may never know.

Addendum: This was published in Issue 125, April/May 2018 of Philosophy Now. To give due credit, they did some useful edits (to the sequence of presentation rather than the content), most of which I've adopted.


Saturday, 30 September 2017

How and why beliefs matter in science

I was going to call this: What is reality? because there is so much disagreement about what constitutes reality in physics and philosophy. In some respects I've addressed that specifically in not-so-recent posts like, What sorts of things exist and how? and My 2 sided philosophy. New Scientist puts out booklets that contain articles published in their magazine (periodicals) on particular themes and two that I have are on quantum mechanics and cosmology. Both of these areas are at the frontiers of physics and therefore bump up against metaphysics and/or philosophy. So this post is intended to be a discussion of people's beliefs and my beliefs in particular, and how those beliefs affect our perspective(s) on science and reality. It needs to be pointed out that sometimes people argue metaphysical ideas as if they are scientific theories, when, strictly speaking, they're not. They will discuss their particular point of view as if it can't be challenged because (according to them) science has proved them right. I will provide examples as I progress.

Before I start, I need to mention a well-written book with a similar title: Why Beliefs Matter; Reflections on the Nature of Science by E. Brian Davies (Professor of Mathematics at Kings College London and a Fellow of the Royal Society); which I discussed back in February 2011 (twice).

When I studied philosophy at a tertiary institution (which I never completed, I might add), one of the lecturers made a salient point which has stayed with me ever since: there are things you know and things you believe, and what you believe should be contingent on what you know and not the other way round. So, for the sake of consistency, I need to define what I mean by ‘things I know’. Scientific discoveries and theories that have been demonstrated valid through evidence, I call ‘things I know’, whereas philosophical ruminations I would call ‘things I believe’. So, for example, I would contend that evolution is something 'I know' because 150 years of accumulated evidence in a variety of disciplines tells me so, even though I’ve not made any of those discoveries myself nor ever contributed intellectually or otherwise to the discipline of evolutionary biology. It needs to be pointed out that the evidence that demonstrates evolution to be valid could equally demonstrate it to be false – the evidence is not neutral.

Because quantum mechanics and relativity theories both challenge our intuitive ideas of how the world works, they provide grist for philosophical and metaphysical interpretations, some of which border on the absurd. Whether I fit into that category or not, I leave for the reader to draw their own conclusions.

I will start with Einstein’s theories of relativity because they have become the basis of all cosmological theories developed over the last century. It was 100 years on November 2015 that he published his seminal paper on the General Theory of Relativity (the Special Theory of Relativity was published 10 years earlier in 1905). In fact, I attempted an exposition on the General Theory to mark the centenary of its birth. This is one of the ‘things I know’ because the sat-nav in your car, or on your phone, utilises both of these theories to provide accurate locations. Of course, there have been innumerable experiments that have proven Einstein’s theories correct in the 100 years that have past since their inception, so there’s no argument concerning their validity. However, there were beliefs held by Einstein, as a direct consequence of his theory, that have since been proven wrong. A mathematical consequence of his theory was to express time as a 4th dimension along with the 3 dimensions of space, which led to the concept of spacetime. Whereas space and time dimensions can change depending on an observer’s frame of reference and velocity, the combined dimension of spacetime remains unchanged.

One of Einstein’s beliefs was that time is a fixed dimension just like space, so the future is just as fixed as the past. In other words, Einstein believed in a strict determinism, which rules out free will. This strongly held belief led Einstein to dispute one of the fundamental tenets of quantum mechanics: that it was random and its outcomes could only be predicted by probabilities. So how can I claim that Einstein’s specific belief in this instance has been proven wrong? It’s generally acknowledged by physicists that quantum mechanics is one of the most successful theories, if not the most successful theory, in the history of science. And indeterminism is an intrinsic attribute of QM brought about by the collapse of the wave function, called its decoherence (which I’ll elaborate on later). In fact, this has led to a range of widely held beliefs, which I’ve discussed elsewhere.

Only a month ago I wrote a post challenging the beliefs of a correspondent to Philosophy Now, who effectively argued that there is no time without consciousness. And a year ago (Nov 2016), I wrote a post challenging a paper written by a couple of academics in California that consciousness brings objects into ‘reality’ including spacetime, which is ‘impermanent’. And more recently, I came across an article in another Philosophy Now magazine (Issue 93, Nov/Dec 2012) called On ‘Known-To-Be-False’ Materialist Philosophies of Mind by Graham Smetham, a Buddhist philosopher. Yes, that’s the full title with ‘On Known-To-Be-False’ highlighted in red. Smethan argues that materialists (who argue that mind is a consequence of ‘materials’ like neurons and synapses in the brain) are using obsolete classical physics. To quote ‘…the belief in the existence of solid material stuff which exists completely independent of mind is now about as scientifically acceptable as the phlogiston theory of heat.’ The context of this proclamation was the discovery of the Higgs boson at the Large Hadron Collider, which effectively demonstrates that ‘Mass, and so matter, are derived aspects of an insubstantial process of reality.’ (Italics in the original.) Basically, Smethan adheres to an extreme interpretation of the Copenhagen interpretation of QM that ‘things’ only come into existence when observed by a conscious entity.

All three of these abovementioned ‘beliefs’ - argued as virtually indisputable - border on solipsism, which is the philosophical premise that everything you see and observe is the product of your mind. The problem with solipsism is that there can only be ONE observer, and everyone else is a product of that observer’s observations. To get around this, they would argue that mind came first, and all other minds are a consequence thereof, rather than a consequence of individual brains. Basically, they all argue that we have the causal process in reverse. Consciousness has not arisen out of an evolutionary process that itself arose from a cosmological process, but the entire cosmological process arose from mind, of which we are all a part.

There is a way, however, in which Smethan could be right, which he alludes to in his ‘Conclusions’. John Wheeler, who famously coined the term, black hole, has argued that we and the Universe are the consequence of a cosmic scale quantum time loop. The point is that QM allows for backwards in time possibilities that have been demonstrated experimentally. In the famous double slit experiment, it’s well known that ‘detecting’ which slit a photon will go through destroys the interference pattern that occurs when it goes through both. In other words, when we try and determine which slit a photon will go through it stops being a wave and becomes a particle. Only waves can produce interference, which infers that the photon goes through both slits simultaneously. Wheeler conjectured that if we ‘looked at’ the photon after it had gone through the slit(s) but before it hit the screen, it would have the same effect. This infers that the ‘detection’ works backwards in time. He was proven correct when the technology eventually caught up with his thought experiment.

There is something compelling about the idea that the Universe saw us coming, which would make it teleological and would support the so-called Strong Anthropic Principle. Paul Davies has argued cogently for the Strong Anthropic Principle without calling it by that name. In his book, The Goldilocks Enigma, he looks at all current scenarios and ‘beliefs’ concerning the nature of the Universe, and he concludes that ‘I have suggested that only self-consistent loops capable of understanding themselves can create themselves, so that only universes with (at least the potential for) life and mind really exist.’  This ‘belief’ is logically consistent with Wheeler’s ‘belief’ and it’s no coincident that Davies dedicated the book to Wheeler, whom he saw as a mentor.

In an earlier book, The Mind of God, Davies expresses the same view in subtly different words:

I belong to the group of scientists who do not subscribe to a conventional religion but nevertheless deny that the universe is a purposeless accident… I have come to the point of view that mind – i.e., conscious awareness of the world – is not a meaningless and incidental quirk of nature, but an absolute fundamental facet of reality. That is not to say that we are the purpose for which the universe exists. Far from it. I do, however, believe that we human beings are built into the scheme of things in a very basic way.

I’ve written about this on other posts, and I’ve concluded that the Universe is pseudo-teleological in as much as the natural laws that it obeys allow for complex intelligent life to evolve without a blueprint or a final goal evident. Both QM and chaos theory make a deterministic universe virtually impossible - I will elaborate on this later.

Richard Feynman, who is arguably the most famous physicist in the post-Einstein era was mentored by Wheeler, and took Wheeler’s backwards in time idea and incorporated it into his Nobel Prize winning theory, QED (quantum electrodynamics).

Robbert Dijkgraaf, who is a professor at the Princeton Institute for Advanced Study and calls himself a mathematical physicist, describes in a not-too-esoteric lecture (on string theory) how Richard Feynman, in his Nobel Prize acceptance speech, told the world how he got this idea from Wheeler. Apparently Wheeler rang him up and said, ‘I know why all the electrons are exactly the same. It’s because they are all the same electron.’ So Feynman logically asked him how this could be and Wheeler responded: ‘Because the same electron simply repeats over time.’ If you go to the 19min mark of Dijkgraaf’s lecture, he explains it with images. What Dijkgraaf doesn’t explain is that an anti-particle (which is a positron in the case of an electron) going forward in time is mathematically equivalent to a particle (electron) going backwards in time. In an interview, I saw with Feynman, he said the ‘same electron’ idea he left alone but the ‘backwards in time’ idea he took from Wheeler.

And since we’re talking about time, I would like to reference a podcast someone alerted me to where scientists and philosophers explain how time has been effectively explained away in physics. While this is partly true, I found the discussion a little disingenuous, if not misleading, because they didn’t provide the context nor explain the significance of time in both relativity theory and QM.

To provide context, Carlo Rovelli, who has written a couple of popular science books (recently translated into English) has stated that at a fundamental level in physics, time disappears mathematically. And Paul Davies, whom I referenced above, has also written in The Goldilocks Enigma: [The] vanishing of time for the entire universe becomes very explicit in quantum cosmology, where the time variable simply drops out of the quantum description. To be more specific, John Wheeler and Bryce De-Witt, in the late 1960s, rewrote Einstein’s field equations for general relativity (gravity) in the same form as electromagnetism and time simply disappeared, which became known as the Wheeler-DeWitt equation.

And yet: Einstein’s very successful theories of relativity incorporate time as a 4th dimension into spacetime, which provides the effective structure of the Universe, even if it can be warped by gravity. And one of the most important and seminal equations in QM is the time dependent Schrodinger equation. What’s more, the wave function, which is the centrepiece of the equation, is incorporated into Feynman’s QED where its phase is time variant (as it is in Schrodinger’s original).

For me, this paradox simply underlines my ‘belief’ that time is the fundamental parameter that makes the marriage of general relativity with QM a stumbling block. I’ve written a number of posts on ‘time’ over a number of years, some of which I’ve plundered for this post. In one of the New Scientist articles I referenced at the start of this post, Anil Ananthaswamy explains how the wave function of Schrodinger’s equation, whilst it evolves in time, ‘…time is itself not part of the Hilbert space where everything else physical sits, but somehow exists outside of it.’ (Hilbert space is the ‘abstract’ space that Schrodinger’s wave function inhabits.) ‘When we measure the evolution of a quantum state, it is to the beat of an external timepiece of unknown provenance.’  My ‘belief’, which I’ve expressed elsewhere, is that time doesn’t exist in QM (in the sense that Ananthaswamy describes above). I came to this conclusion even before I read Ananthaswamy’s article because it would explain superposition, which is a well known phenomenon in QM.

What’s more, the ‘external timepiece’ could be provided by gravity, since gravity determines the rates of clocks, even to the extent that clocks stop when they reach the event horizon of a black hole. I find this a compelling idea, and compelling ideas have a tendency to become beliefs.

And getting to the nub of the title of this post, it’s beliefs that drive science or scientific breakthroughs. Basically, scientists follow a belief until it’s validated or it’s proven wrong.

I mentioned Carlo Rovelli earlier, who is a proponent of loop quantum gravity theory, and one of his books I’ve read is Reality Is Not What It Seems: The Journey to Quantum Gravity, which is essentially a brief and erudite history of physics going back to the Ancient Greeks. Curiously, he’s dismissive of Schrodinger’s equation, which he relegates to a footnote, and argues that the wave function is a mathematical fiction which has conceptually led people astray from a true understanding of QM. He argues that Heisenberg’s matrix formulation is conceptually superior because there is nothing in between observations – the wave function and Hilbert space simply don’t exist.

In his historical account of QM, Rovelli goes straight from Heisenberg to Dirac’s equation as if Schrodinger played no significant role. In fact, Dirac derived his eponymous equation from Schrodinger's, and therefore contains its own (fictional) wave function. Heisenberg and Schrodinger were rivals, philosophically, professionally and politically (during WW2, Heisenberg worked on the atomic bomb project for the Nazis while Schrodinger went into exile in Ireland). Max Born contributed to both Heisenberg’s matrix formulation and Schrodinger’s wave interpretation (by determining how to derive probabilities from Schrodinger’s eponymous equation). Even though Heisenberg eschewed Schrodinger’s wave function, Schrodinger was able to demonstrate that they were mathematically equivalent once Born’s rule was applied to his equation (by squaring the modulus of the wave function which removes the imaginary component). Dirac applied Einstein’s special theory of relativity to Schrodinger’s equation which provides negative energies (as Schrodinger himself had discovered and abandoned). But Dirac predicted that the negative energies could be interpreted as antiparticle electrons (positrons) and was later proven correct.

Obviously, Rovelli is far more knowledgeable on this topic than me, yet we have different ‘beliefs’, as do many other physicists. Jim Al-Khalili, a physicist at the University of Surrey, has written one of the best introductory books on QM I’ve read, called Quantum: A Guide for the Perplexed. Unlike Rovelli, the wave function is key to his exposition and Schrodinger’s equation is the only equation in the entire book, which he calls 'the most important equation in physics'.

At the time I read Rovelli’s book, I also read Roger Penrose’s latest tome, Fashion Faith and Fantasy in the New Physics of the Universe. I’ve long been a fan of Penrose and we share some ‘beliefs’, though I don’t necessarily share his ‘belief’ of a cyclic universe. Penrose can be delightfully edifying or maddeningly esoteric. This book, however, I found quite accessible, and he put the more challenging aspects of his exposition in an appendix.

I didn’t realise before that Penrose does most of his own illustrations, which are surprisingly good quality for someone not known for his artistic talents. On the back cover is an illustration (credited to Penrose) of a mermaid sitting on a rock with a seashore landscape in the background and the underwater world in the foreground, including the mermaid’s tail. I know from reading the book that this is a metaphor for Penrose’s own ‘beliefs’ regarding QM. The underwater world represents the quantum universe and the seashore represents the classical world of physics, with the water’s surface representing the wave function collapse or decoherence that delineates the two. From what I’ve read and know on this subject, most physicists ignore this dichotomy whereas I ‘believe’ there are 2 worlds that interact and the so-called collapse of Schrodinger’s wave function is the mathematical representation of that interaction.

Penrose ‘believes’ that gravity causes this decoherence and reading one of the New Scientist articles I mentioned, decoherence occurs when superposition can no longer exist. The reason that superposition doesn’t occur on a macro scale, according to Penrose, is that if you get enough particles together they create a gravitational field which in itself can’t be superimposed. It’s well known that clock rates change in a gravitational field, even from your head to your toe. If you have a superposition (of 2) separated far enough then their different clock rates determined by Planck’s hf (or atomically) will cause a decoherence so the particle suddenly becomes 1 in the so-called classical physical world.

In another New Scientist article, Yakir Aharonov, at Chapman University, Orange, California, asked the fundamental question some 50 years ago: ‘Does time in quantum mechanics have to flow from the past to the present? The answer, at least mathematically, is no.’ Aharonov along with a colleague, Jeff Tollaksen, has been performing experiments to attempt to demonstrate this. I won’t elaborate, but, of course, some argue that the experiments, whilst compelling, can be interpreted in other ways. But Aharonov says the mathematical interpretation of time symmetry is 'very elegant'.

However, the decoherence, which I argue is the interface between the QM and classical physics world, creates a time asymmetry that we are all familiar with: the past is fixed yet the future is open-ended. Once decoherence occurs, the time symmetry that Aharonov ‘believes’ becomes time assymetrical. Schrodinger once pointed out (according to John Gribbin’s biography) that the Born rule, which multiplies the complex component of the wave function by its conjugate to remove the imaginary component and provide a probability, is effectively the same as solving the equation both forwards and backwards in time. As Arthur I Miller points out in Graham Farmelo’s book, It Must Be Beautful: ‘Born’s aim was nothing less striking than to associate Schrodinger’s wave function with the presence of matter.’ In other words, it was Born’s great insight that gave us a mathematical means to go from the quantum world to the classical world by transforming Schrodinger’s equation into probabilities.

It should be pointed out that Schrodinger’s equation was purely suppositional. As Feynman once pointed out: ‘No one knows where Schrodinger’s equation came from. It came out of Schrodinger’s head. It can’t be derived from anything we know.’ I’ve jokingly called Schrodinger’s equation God’s equation because it attempts to predict the future via probabilities, and, statistically, it’s proven very accurate.

So what about the mathematical prediction that time disappears in quantum cosmology. I don’t know enough to answer that, but I’ve always found the Hartle-Hawking model of the Universe somewhat compelling. They argue, mathematically, that the time dimension may have originally been a 4th 'spatial' dimension (expressed through complex algebra, therefore imaginary) and this implies that in the beginning there was no time. Now, people will say: How can you have a beginning without time? I don’t know, but I admit that the idea appeals to me.

Is time symmetrical at a macro level, without QM? It’s been argued that Newtonian physics allows for time reversal and it’s only entropy that provides a direction in time. Entropy’s time direction is usually explained by the example of dropping an egg on the floor. If you were to run a film (or video) backwards of the event with the egg coming together and rising from the floor, everyone would know it’s impossible. But entropy doesn’t really provide a direction for time because it’s based on probabilities. To give another example, if you open a bottle of perfume in a room the perfume molecules quickly disperse to all corners of the room, they don’t congregate in one corner. There is an infinitesimal probability that they could all end up in one corner but there is a much higher probability, that increases with time, that they will disperse everywhere.

However, time asymmetry on a macro scale (without QM) is caused by chaos theory. Chaos theory is described as deterministic but unpredictable, which sounds like a contradiction, but it’s dependent on initial conditions; which is why weather forecasts are only predictable short term. A slight change has long term effects, but short term is predictable. This even applies to the orbits of the planets, which, despite appearances, are mathematically chaotic. It’s Earth's position in its orbit that's unpredictable (in the order of 150 million km over 100 million years).

I think that one of the more insightful posts I’ve written for this blog was called What is now? However, one issue I didn’t really address was: Is there a universal now? Towards the end of that post I explained how Einstein’s special theory of relativity made simultaneity impossible to be agreed upon by different observers, pending their relative velocities and positions in spacetime. Einstein concluded that there was no universal 'now' because everyone’s ‘time’ was different.

However, as we’ve already seen, Einstein was not infallible. One of the New Scientist articles I read challenges this particular aspect of Einstein’s relativity. Certainly, people who are in the same ‘frame of reference’ (occupy the same dimensional point of spacetime) would agree on ‘now’. Rovelli, whom I cited earlier, has argued that ‘now’ is the edge of the Big Bang. In my previous post, I made the point that we talk about an ‘age of the Universe’ which infers a universal now and I tend to agree with Rovelli: it’s the edge of the Big Bang which is everywhere in the Universe, including where you are currently standing or sitting. And entanglement, which is a feature of QM that doesn’t exist in classical physics, also infers a universal now. Science fiction writers, like myself, adopt a universal now even though we know we can’t physically send a signal anywhere in the Universe faster than the speed of light. But this contradiction (between relativity and QM) led to a renowned debate between Einstein and Niels Bohr, where Einstein famously called entanglement: ‘spooky action at a distance’. To cut a century long story short, every experiment, which has tested entanglement over relativity, has shown that QM triumphs.

This is a post with no conclusions, just a collection of ‘beliefs’, so I’ll finish with a joke provided by Robbert Dijkgraaf in his aforementioned video (at the 45 min mark).

What’s the difference between a physicist and a mathematician?
A physicist studies the laws that God chose nature to obey.
A mathematician studies the laws that God has to obey.