Paul P. Mealing

Check out my book, ELVENE. Available as e-book and as paperback (print on demand, POD). Also this promotional Q&A on-line.

Sunday, 21 November 2021

Cancel culture – the scourge of our time

There are many things that cause me some anguish at the moment, not least that Donald Trump could easily be re-elected POTUS in 2024, despite deliberately undermining and damaging the very institution he wants to lead, which is American democracy. It’s not an exaggeration to say that he’s attacked it at its core.


This may seem a mile away from the topic I’ve alluded to in the title of my post, but they both seem to be symptoms of a divisiveness I haven’t seen since the Vietnam war. 

 

The word, ‘scourge’, is defined as ‘a whip used as an instrument of punishment’; and that’s exactly how cancel culture works, with social media the perfect platform from which to wield it.

 

In this weekend’s Good Weekend magazine (Fairfax Group), the feature article is on this very topic. But I would like to go back to the previous weekend, when another media outlet, Murdoch’s Weekend Australian Magazine published an article on well known atheist, Richard Dawkins. It turns out that at the ripe old age of 80, Dawkins has been cancelled. To be precise, he had his 1996 Humanist of the Year award withdrawn by the American Humanist Association (AHA) earlier this year, because, in 2015, he tweeted a defence of Rachel Doleza (a white chapter president of NAACP, the National Association for the Advancement of Coloured People) who had been vilified for identifying as Black.

 

Of course, I don’t know anything about Rachel Doleza or the context of that stoush, but I can identify with Dawkins, even though I’ve never suffered the same indignity. Dawkins and I are of a similar mould, though we live in different strata of society. In saying that, I don’t mean that I agree with all his arguments, because I obviously don’t, but we are both argumentative and are not shy in expressing our opinions. I really don’t possess the moral superiority to throw stones at Dawkins, even though I have.

 

I remember my father once telling me that if you admired an Australian fast bowler (he had someone in mind) then you also had to admire an English fast bowler (of the same generation), because they had the exact same temperament and wicket-taking abilities. Of course, that also applies to politicians. And it pretty much applies to me and Dawkins.

 

On the subject of identifying as ‘black’, I must tell a story related to me by a friend I knew when I worked in Princeton in 2001/2. She was a similar age to me and originally from Guyana. In fact, she was niece to West Indies champion cricketer, Lance Gibbs, and told me about attending his wedding when she was 8 years old (I promise no more cricketing references). But she told me how someone she knew (outside of work) told her that she ‘didn’t know what it was like to be black’. To which she replied, ‘Of course I know I’m black, I only have to look in the mirror every morning.’  Yes, it’s funny, but it goes to a deeper issue about identity. So a black person, who had lived their entire life in the USA, was telling another black person, who had come from outside of the US, that they didn’t know what it was like to be ‘black’. 

 

Dawkins said that, as a consequence, he’d started to self-censor, which is exactly what his detractors want. If Dawkins has started to self-censor, then none of us are safe or immune. What hurt him, of course, was being attacked by people on the Left, which he mostly identifies with. And, while this practice occurs on both sides, it’s on the Left where it has become most virulent. 

 

“I self-censor. More so in recent years. Why? It’s not a thing I’ve done throughout my life, I’ve always spoken my mind openly. But we’re now in a time when if you do speak your mind openly, you are at risk of being picked up and condemned.”

 

“Every time a lecturer is cancelled from an American university, that’s another God knows how many votes for Trump.”

 

And this is the thing: the Right loves nothing more than the Left turning on itself. It’s insidious, self-destructive and literally soul-destroying. In the Good Weekend article, they focus on a specific case, while also citing other cases, both in Australia and America. The specific case was actor, Hugh Sheridan, having a Sydney Festival show cancelled, which he’d really set his sights on, because he was playing a trans-gender person which created outrage in the LGBTQIA+ community. Like others cited in the article, he contemplated suicide which triggered close friends to monitor him. This is what it’s come to. It’s a very lengthy article, which I can’t do justice to on this post, but there is a perversion here: all the shows and people who are being targeted are actually bringing diversity of race and sexuality into the public arena and being crucified by the people they represent. The conservatives, wowsers and Bible-bashers must love it.

 

This is a phenomenon that is partly if not mostly, generational, and amplified by social media. People are being forced to grovel.

 

Emma Dawson, head of the Labor-aligned (Australian political party, for overseas readers) Per Capita think tank, told the Good Weekend“[cancel culture is] more worrying to me than just about anything other than far-right extremism. It is pervasive among educated young people; very few are willing to question it.”

 

‘In 2019, Barack Obama warned a group of young people: “This idea of purity, and you’re never compromised and always politically woke... you should get over that quickly. The world is messy.”

 

And this is the nub of the issue: cancel culture is all about silencing any debate, and, without debate, you have authoritarianism, even though it’s disguised as its opposite.

 

In the same article, the author, James Button, argues that the rise of Donald Trump is not a coincidence in the emergence of this phenomenon.

 

The election of Donald Trump horrified progressives. Here was a president – elected by ordinary Americans – who was racist, who winked at neo-Nazis and who told bare-faced lies in a brazen assertion of power while claiming that the liars were progressive media. His own strategy adviser, Stephen Bannon, said that the way to win the contest was to overwhelm the media with misinformation, to “flood the zone with shit”.

 

And they succeeded so well that America is more divided than it has been since its historical civil war.


To return to Hugh Sheridan, whom I think epitomises this situation, at least as it’s being played out in Australia, in that it’s the Arts that are coming under attack, and from the Left, it has to be said. Actors and writers (like myself) often portray characters who have different backgrounds to us. To give a recent example on ABC TV, which produces some outstanding free-to-air dramas with internationally renowned casts, when everything else is going into subscribed streaming services. Earlier this year, they produced and broadcast a series called The Newsreader, set in the 1980s when a lot of stuff was happening both locally and overseas. ‘At the 11th AACTA (Australian Academy of Cinema and Television Arts) awards, the show was nominated for more awards than any other program’ (Wikipedia).

 

A key plotline of the show was that the protagonist was gay but not openly so. The point is that I assume the actor was straight, although I don’t really know, but it’s what actors do. God knows, there have been enough gay actors who have played straight characters (Sir Ian McKellen, who played Gandalf, as well as Shakespearean roles). So why crucify someone who is part of the LGBTQIA+ community for playing a transgender role. He was even accused of being homophobic and transgenderphobic. He tweeted back, “you’re insane”, which only resulted in him being trolled for accusing his tormentors of being ‘insane’.

 

Someone recently asked me why I don’t publish what I write anymore. There is more than one reason, but one is fear of being cancelled. I doubt a publisher would publish what I write, anyway. But also, I suffer from impostor syndrome in that I genuinely feel like an impostor and I don’t need someone to tell me. The other thing is that I simply don’t care; I don’t feel the need to publish to validate my work.


Saturday, 13 November 2021

To the End of the Universe

I like to remind myself and others how little I know. It’s one of the reasons I like Quora, where I get to occasionally interact with people who know considerably more than me. One such person is Mark John Fernee, a physicist at the University of Queensland. I’ve learned a lot of science from an approach based on scepticism. For example, I was sceptical about relativity theory: that clocks could really slowly down and why did they slow down for one observer but not another, as demonstrated in the famous twin paradox. In fact, it’s nature’s paradoxes that provide the incentive to try and understand it to the extent that one can. 

 

Another example is quantum mechanics. For a long time, I followed David Bohm’s approach, which was really an attempt to bring QM back down to Earth so-to-speak. I believe that both Schrodinger and Einstein also believed in a ‘hidden-variables’ approach.

 

I finally gave this up when I concluded that QM and classical physics obey different rules: superposition and entanglement are not part of classical physics, either experimentally or mathematically. And I found that special relativity only made sense in the context of general relativity (which I discuss in more detail below).

 

And then you have the combination of special relativity with QM, which, from a mathematical perspective, allows anti-particles to exist. As Fernee points out, because an anti-particle can be represented mathematically by a particle going backwards in time, it ensures that charge is conserved by time’s arrow. In other words, you can turn an electron into a positron, or vice versa, by reversing time, which is why it’s never observed.

 

One of the paradoxes I now struggle with is that, according to special relativity, you can have different ‘nows’ in different parts of the universe. This is why most, if not all physicists, argue that the universe is completely deterministic, if someone’s future can be hypothetically observed by someone else’s motion. I confess I’m very sceptical about this. What they're saying is that the ‘now’ in some other part of the Universe is changed by an observer’s motion locally. Fernee quotes Roger Penrose in response to a question: can we theoretically teleport to some other location in the Universe instantaneously, like we see in science-fiction movies? According to Fernee (quoting Penrose), if you could and then teleport back, you might arrive before you left, because a random movement by you could change the ‘now’ in that distant part of the universe into your past. I’m assuming this can be demonstrated mathematically; it’s a consequence of simultaneity changing depending on the observer, according to special relativity. 

 

I’ve discussed this in other posts. I like to point out that, where there’s a causal relationship, the sequence of events can’t be changed, dependent on an observer’s perspective. Which makes me wonder: does a sequence change, dependent on an observer’s perspective, when they’re not causal? Is it possible that there is a sequence of events independent of any observer?

 

And this leads to another paradox that is hardly ever addressed which is that, despite this proliferation of ‘nows’, dependent on observers’ perspectives, we have an ‘age of the Universe’. I actually raised this with Fernee in a dialogue I had with him, and he referenced a paper by Tamara M. Davis and Charles H. Lineweaver at the University of New South Wales, titled, Expanding Confusion: Common Misconceptions of Cosmological Horizons and the Superluminal Expansion of the Universe. I’ve lost the link, and I can no longer even find the post on Quora, but I downloaded the paper, which is 24 pages long, not including the references.

 

Of course, it’s an academic paper, yet I found it easier to follow and understand than I might have expected. Which is not to say I have a full grasp of it, but I feel I can relay some of its most pertinent points. The paper is dated 13 November 2013, so it seems apt I’m writing about it on 13 Nov, 2021. Firstly, the cosmological model of the Universe the authors discuss, is referred to as ΛCDM cosmology (Lambda-CDM cosmology), where CDM is an acronym for Cold Dark Matter. Lambda (Λ) is the cosmological constant that gives us ‘dark energy’, so the model includes both dark energy and dark matter.

 

As the title suggests, the authors discuss misconceptions found in the literature concerning the horizon problem, and at the end they provide a list of examples, including one by Richard Feynman (1995), 

 

“It makes no sense to worry about the possibility of galaxies receding from us faster than light, whatever that means, since they would never be observable by hypothesis.” 

 

And this one by Paul Davies (1978): 

 

“. . . galaxies several billion light years away seem to be increasing their separation from us at nearly the speed of light. As we probe still farther into space the redshift grows without limit, and the galaxies seem to fade out and become black. When the speed of recession reaches the speed of light we cannot see them at all, for no light can reach us from the region beyond which the expansion is faster than light itself. This limit is called our horizon in space, and separates the regions of the universe of which we can know from the regions beyond about which no information is available, however powerful the instruments we use.” 

 

What the authors expound upon in the main body of their text is that there are, in effect, a number of horizons, which makes these statements erroneous at best. To be fair to both Feynman and Davies, the ΛCDM model of the Universe wasn’t known at the time. Dark energy wasn’t officially ‘discovered’ until 1998. Davis and Lineweaver provide diagrams to show these various horizons, which I can’t duplicate here, and if I did, I’d have trouble explicating them. But basically, there is a particle horizon, which is the limit of the observable universe, the Hubble sphere, which is the boundary of the expanding universe (where it equals c) and the event horizon. (To quote the authors: Our event horizon is our past light cone at the end of time, t = ∞ in this case.) There is a logical tendency to think they should all be the same thing, but they’re not, as the authors spend a good portion of their 24 pages expounding upon. To quote again:

 

The particle horizon at any particular time is a sphere around us whose radius equals the distance to the most distant object we can see... Our effective particle horizon is the cosmic microwave background (CMB).

 

Whereas:

 

Hubble sphere is defined to be the distance beyond which the recession velocity exceeds the speed of light, DHS = c/H. As we will see, the Hubble sphere is not an horizon. Redshift does not go to infinity for objects on our Hubble sphere (in general) and for many cosmological models we can see beyond it... The ratio of  3/1 is the ratio between the radius of the observable universe and the age of the universe, 46 Glyr/13.5 Gyr.

 

What you have to get your head around is that the universe is dynamic, and given the time it takes for light to reach us from the edge of the Universe, both the edge and the objects (we’re observing) have moved on, quite literally. This means we can observe objects over the horizon so-to-speak. But it’s even more complex than that, because the Hubble sphere, which is expanding, can overtake photons that were emitted beyond the horizon but are travelling towards us. According to the authors, we can observe objects that are ‘now’ travelling at superluminal speeds relative to us. 

 

This is how the authors explain it:

 

Light that superluminally receding objects emit propagates towards us with a local peculiar velocity of c, but since the recession velocity at that distance is greater than c, the total velocity of the light is away from us. However, since the radius of the Hubble sphere increases with time, some photons that were initially in a superluminally receding region later find themselves in a subluminally receding region. They can therefore approach us and eventually reach us. The objects that emitted the photons however, have moved to larger distances and so are still receding superluminally. Thus we can observe objects that are receding faster than the speed of light. 

 

One of the most illuminating aspects of their dissertation, for me, was that one needs to use a general relativistic (GR) derivation of the Doppler redshift and not a special relativistic (SR) derivation, which is usually used. They show graphically that the SR and GR derivations diverge, especially for further distances. On the same graph, they show how a non-relativistic Doppler shift, which would be ‘tired light’ (authors’ term) is actually a horizonal line, so nowhere near. The graph, of course, shows these curves against observations of super novae. As they explain it:

 

The general relativistic interpretation of the expansion interprets cosmological redshifts as an indication of velocity since the proper distance between comoving objects increases. However, the velocity is due to the rate of expansion of space, not movement through space, and therefore cannot be calculated with the special relativistic Doppler shift formula. 

 

What they are saying is that there is a distinction between the movement of the objects in space and the movement of space itself. For me, this ends the debate about whether ‘space’ is an entity or just the distance between objects. As much as I admire and respect Viktor T Toth, I’ve always had a problem with his argument that space ‘doesn’t expand’, but only the objects ‘move’ thus creating more space between them. The Hubble sphere, as I understand it, is where space equals c.

 

Later in their paper, Davis and Lineweaver describe how they derived their equation for the GR redshift.

 

For the observed time dilation of supernovae we have to take into account an extra time dilation factor that occurs because the distance to the emitter (and thus the distance light has to propagate to reach us) is increasing.

 

In other words, in calculating the redshift of a ‘comoving galaxy’, they also have to take into account the constant expansion of space in the photon’s journey to the observer. 

 

....the peculiar velocity of a photon, Rχ ̇, is cSince the velocity of light through comoving coordinates is not constant (χ ̇ = c/R), to calculate comoving distance we cannot simply multiply the speed of light through comoving space by time. We have to integrate over this changing comoving speed of light for the duration of propagation. Thus, the comoving coordinate of a comoving object that emitted the light we now see at time t is attained by integrating.  (χ ̇is the time dependent expansion of space and R is the radial distance). 

 

Notice that in contrast to special relativity, the redshift does not indicate the velocity, it indicates the distance. That is, the redshift tells us not the velocity of the emitter, but where the emitter sits (at rest locally) in the coordinates of the universe. 

 

In other words, when we integrate χ ̇, we get χ, which is distance. The authors provide another equation for determining the velocity.

 

Now, one of the obvious aspects of this whole exercise is that they are calculating a redshift across space that changes over time, so what does time mean in this context?

 

This is how the authors explain it, just before their conclusion:

 

Throughout this paper we have used proper time, t, as the temporal measure. This is the time that appears in the RW metric and the Friedmann equations. This is a convenient time measure because it is the proper time of comoving observers. Moreover, the homogeneity of the universe is dependent on this choice of time coordinate — if any other time coordinate were chosen (that is not a trivial multiple of t) the density of the universe would be distance dependent. Time can be defined differently, for example to make the SR Doppler shift formula correctly calculate recession velocities from observed redshifts (Page, 1993). However, to do this we would have to sacrifice the homogeneity of the universe and the synchronous proper time of comoving objects.

 

I find it interesting that they adopt a ‘proper time’ for the whole universe. It makes one wonder what ‘now’ really means.


 

Footnote 1: I want to point out that in their acknowledgements, Davis and Lineweaver reference Brian Schmidt, who received a joint Nobel Prize for his work in empirically confirming dark energy, or the cosmological constant (Λ).


Footnote 2: You can download the paper here.



Addendum: This is a video by someone (who knows more than me) and doesn’t give his name. I posted a video by him before, regarding the question: Is gravity a force? His videos on Penrose tiling and the Feigenbaum constant are among the best.

 

In this video, he refutes my claim, arguing that space doesn’t expand. He makes one very compelling point that if space expanded so would atoms and so would we. Victor T Toth makes the exact same point, and I’d have to agree. The size of all atoms is determined by h (Planck's constant), which doesn't change with the expansion of the Universe. I might add that this presenter and Toth disagree on whether gravity is a force or not, so physicists don’t always agree, even in the same field, like cosmology.

 

In the video, he argues that there are 3 types of Doppler shift and contends that they are actually all the same. Most intriguing was the thought experiment that someone in ‘free fall’ wouldn’t see the Doppler shift that another observer would. In other words, it’s observer dependent.

 

But there is a spacetime metric or manifold, which forms the basis of general relativity theory (GR) and this can warp and curve (according to said theory). In fact, there is a phenomenon called ‘frame dragging’, where spacetime is dragged around by a spinning black hole. Light is always c in reference to this spacetime manifold. So when ‘space’ reaches the speed of light at the horizon relative to us, light is still c in that reference frame, even though it is expanding away from us at c or more. Space can travel faster than light, even though massive particles can’t, which is why ‘inflation’, proposed at the birth of the Universe, is possible.

 

Getting back to the Doppler shift the authors cite in their paper, they use a GR Doppler shift, which I believe isn’t covered in the video.


Saturday, 6 November 2021

Reality and our perception of it

The latest issue of Philosophy Now (Issue 146, Oct/Nov 2021) has as its theme, ‘Reality’. The cover depicts Alice falling down the rabbit hole, with the notated question, What’s Really Real? I was motivated (inspired is the wrong word) to write a letter to the Editor, after reading an essay by Paul Griffiths, titled, Against Direct Realism. According to the footnote at the end of the article: Dr Paul H. Griffiths has a background in physics and engineering, and a longstanding interest in the philosophy and science of perception. I have a background in engineering and an interest in philosophy and science (physics in particular), but there the similarity ends.

 

Griffiths gives an historical account, mostly last century, concerning problems and points of view on ‘direct realism’ and ‘indirect realism’, using terms like ‘disjunctivism’ and ‘representationalism’, making me wonder if all of philosophy can be reduced to a collection of isms. To be fair to Griffiths, he’s referencing what others have written on this topic, and how it’s led to various schools of thought. I took the easy way out and didn’t address any of that directly, nor reference any of his many citations. Instead, I simply gave my interpretation of the subject based on what I’ve learned from the science, and then provided my own philosophical twist.

 

I’ve covered a lot of this before when I wrote an essay on Kant. Griffiths doesn’t mention Kant, but arguably that’s where this debate began, when he argued that we can never know the ‘thing-in-itself’, but only a perception of it. Just to address that point, I’ve argued that the thing-in-itself varies depending on the scale one observes it at. It also depends on things like what wavelength radiation you might use to probe it. 

 

But, in the context of direct realism or indirect realism, various creatures perceive reality in different ways, which I allude to in my 400 word response. If I was to try and put myself in one of Griffith’s categories, I expect I’m an ‘indirect realist’ because I believe in an independent reality and that my ‘perception’ of it is unique to my species, meaning other species would perceive it differently, either because they have different senses or the senses they have can perceive other parts of the spectrum to mine. For example, some insects and birds can see in the ultra-violet range, and we can see some colours that other primates can’t see.

 

However, I never mention those terms, or even Kant, in my missive to the Editor. I do, however, mention the significance of space and time, both to reality, and our perception of it. Here is my response:

 

 

Paul Griffith’s essay titled, Against Direct Realism (Issue 146, October/November 2021) discusses both the philosophy and science of ‘perception’, within the last century in particular. There are two parts to this topic: an objective reality and our ability to perceive it. One is obviously dependent on the other, and they need to be addressed in that order.

 

The first part is whether there is an objective reality at all. Donald Hoffman claims that ‘nothing exists unperceived, including space and time’, and that there are only ‘conscious agents’. This is similar to the argument that we live in a simulation. There is, of course, one situation where this happens, and that’s when we are dreaming. Our brains create a simulacrum of reality in our minds, which we can not only see but sometimes feel. We’re only aware that it’s not reality when we wake up.

 

There is a major difference between this dream state and ‘real life’ and that is that reality can be fatal – it can kill you. This is key to understanding both aspects of this question. It’s not contentious that our brains have evolved the remarkable ability to model this reality, and that is true in other creatures as well, yet we perceive different things, colour being the most obvious example, which only occurs in some creature’s mind. Birds can see in almost 300 degree vision, and bats and dolphins probably ‘see’ in echo-location, which we can’t even imagine. Not only that, but time passes at different rates for different creatures, which we can mimic with time-lapse or slow-motion cinematography. 

 

But here’s the thing: all these ‘means’ of perception are about keeping us and all these creatures alive. Therefore, the model in our minds must match the external reality with some degree of accuracy, yet it does even better than that, because the model even appears to be external to our heads. What’s more, the model predicts the future, otherwise you wouldn’t be able to catch a ball thrown to you. *

 

There is one core attribute of both reality and its perception that is rarely discussed, and that is space and time. We live in a universe with three spatial dimensions and one time dimension, so the models our brains create need to reflect that. The reason we can’t imagine a higher dimensional space, even though we can represent it mathematically, is because we don’t live in one.

 

 

·      There is a 120 millisecond delay between the action and the perception, and your brain compensates for it.