Paul P. Mealing

Check out my book, ELVENE. Available as e-book and as paperback (print on demand, POD). Also this promotional Q&A on-line.

Saturday, 14 November 2015

The Unreasonable Effectiveness of Mathematics

I originally called this post: Two miracles that are fundamental to the Universe and our place in it. The miracles I’m referring to will not be found in any scripture and God is not a necessary participant, with the emphasis on necessary. I am one of those rare dabblers in philosophy who argues that science is neutral on the subject of God. A definition of miracle is required, so for the purpose of this discussion, I call a miracle something that can’t be explained, yet has profound and far-reaching consequences. ‘Something’, in this context, could be described as a concordance of unexpected relationships in completely different realms.

This is one of those posts that will upset people on both sides of the religious divide, I’m sure, but it’s been rattling around in my head ever since I re-read Eugene P. Wigner’s seminal essay, The Unreasonable Effectiveness of Mathematics in the Natural Sciences. I came across it (again) in a collection of essays under the collective title, Math Angst, contained in a volume called The World Treasury of Physics, Astronomy and Mathematics edited by Timothy Ferris (1991). This is a collection of essays and excerpts by some of the greatest minds in physics, mathematics and cosmology in the 20th Century.

Back to Wigner, in discussing the significance of complex numbers in quantum mechanics, specifically Hilbert’s space, he remarks:

‘…complex numbers are far from natural or simple and they cannot be suggested by physical observations. Furthermore, the use of complex numbers in this case is not a calculated trick of applied mathematics but comes close to being a necessity in the formulation of the laws of quantum mechanics.’

It is well known, among physicists, that in the language of mathematics, quantum mechanics not only makes perfect sense but is one of the most successful physical theories ever. But in ordinary language it is hard to make sense of it in any way that ordinary people would comprehend it.

It is in this context that Wigner makes the following statement in the next paragraph following the quote above:

‘It is difficult to avoid the impression that a miracle confronts us here… or the two miracles of the existence of laws of nature and of the human mind’s capacity to divine them.’

Hence the 2 miracles I refer to in my introduction. The key that links the 2 miracles is mathematics. A number of physicists: Paul Davies, Roger Penrose, John Barrow (they’re just the ones I’ve read); have commented on the inordinate correspondence we find between mathematics and regularities found in natural phenomena that have been dubbed ‘laws of nature’.

The first miracle is that mathematics seems to underpin everything we know and learn about the Universe, including ourselves. As Barrow has pointed out, mathematics allows us to predict the makeup of fundamental elements in the first 3 minutes of the Universe. It provides us with the field equations of Einstein’s general theory of relativity, Maxwell’s equations for electromagnetic radiation, Schrodinger’s wave function in quantum mechanics and the four digit software code for all biological life we call DNA.

The second miracle is that the human mind is uniquely evolved to access mathematics to an extraordinarily deep and meaningful degree that has nothing to do with our everyday prosaic survival but everything to do with our ability to comprehend the Universe in all the facets I listed above.

The 2 miracles combined give us the greatest mystery of the Universe, which I’ve stated many times on this blog: It created the means to understand itself, through us.

So where does God fit into this? Interestingly, I would argue that when it comes to mathematics, God has no choice. Einstein once asked the rhetorical question, in correspondence with his friend, Paul Ehrenfest (if I recall it correctly): did God have any choice in determining the laws of the Universe? This question is probably unanswerable, but when it comes to mathematics, I would answer in the negative. If one looks at prime numbers (there are other examples, but primes are fundamental) it’s self-evident that they are self-selected by their very definition – God didn’t choose them.

The interesting thing about primes is that they are the ‘atoms’ of mathematics because all the other ‘natural’ numbers can be determined from all the primes, all the way to infinity. The other interesting thing is that Riemann’s hypothesis indicates that primes have a deep and unexpected relationship with some of the most esoteric areas of mathematics. So, if one was a religious person, one might suggest that this is surely the handiwork of God, yet God can’t even affect the fundamentals upon which all this rests.

Addendum: I changed the title to reflect the title of Wigner's essay, for web-search purposes.

No comments: