In the latest issue of Philosophy Now (Issue 124, February / March 2018) I read a review of a book, Experiencing Time by Simon Prosser, ‘a lecturer in philosophy at St Andrews University,’ (Scotland, presumably). The reviewer was Heather Dyke, who ‘has taught philosophy at Otago, NZ and at the London School of Economics’.
I haven’t read Prosser’s book, but I was particularly taken by this quote (albeit out of context): "…if no physical system can detect the passage of time, then neither can the human mind". Basically (according to Dyke), Prosser rejects what he calls ‘A-Theory’ that past, present and future is how time manifests itself and, what’s more, is dynamic in as much as past, present and future keep changing all the time (my italics). ‘B-Theory’ simply states that events are temporally related – some events precede other events but there is ‘no objective distinction between past, present and future, and that time is not dynamic’ (Prosser’s position). I can’t do Prosser justice, but I can use my own philosophical position to critique what Dyke presented.
Prosser came up with a thought experiment, which Dyke only partly expounds upon: “a physical device that could detect whether or not time was passing, and thus tell whether or not A-Theory was true”. According to Dyke, Prosser contends that his detector, which uses ‘light... [to] illuminate when it detects the passage of time’, can’t distinguish between A-Theory and B-Theory, because ‘it will illuminate’ in both cases. This apparently leads him to the conclusion that I quoted above: if time can’t be detected by his ‘device’ then ‘neither can the human mind’.
My own position is that both A-Theory and B-Theory are correct, because B-Theory is just A-Theory without consciousness. Consciousness is the 'time-passing detector' that Prosser claims can’t exist. Consciousness is the only phenomenon that exists in a continuous present, as Erwin Schrodinger pointed out in his prescient book, What is Life?. Schrodinger doesn’t claim that this is a unique attribute of consciousness, but I do. I contend that everything else in the Universe either exists in the past or the future. Only consciousness surfs a wave of time which we experience as a constant now. That is why the concepts of past, present and future have no reference without consciousness; and, on that point, Prosser and I might even agree.
I’ve written a few posts on time, and in one I quoted William Lawrence Bragg:
Everything that has already happened is particles, everything in the future is waves. The advancing sieve of time coagulates waves into particles at the moment ‘now’.
I’m the only person I know who believes that quantum mechanics and classical physics are complementary rather than different versions of the same reality. Schrodinger’s equation is fundamentally a description of a wave function that only exists in Hilbert space, which theoretically can have up to infinite dimensions. Schrodinger’s equation has been superseded by QED (quantum electrodynamics) but the wave function and its phase change with respect to time and the Born mechanism to convert it into probabilities in the ‘real world’ (not Hilbert space) still apply. Also there is no time in Hilbert space, so ‘time’ in the famous time dependent Schrodinger equation can only exist in the classical physics world.
It is for all these reasons that I argue that they are different worlds that happen to interface at what’s called the ‘decoherence’ of the wave function, when the Schrodinger equation no longer applies. That’s right: Schrodinger’s equation only applies in Hilbert space, not the real world, even though time in the real world determines the phase of the wave function.
But I believe Lawrence Bragg (as distinct from his father, William Henry Bragg) provided a clue. Basically, it all makes sense to me if quantum mechanics is the future and classical physics is the past. The Born rule, that gives us the probability of an ‘event’ occurring in the real world (in the future), is mathematically equivalent to running Schrodinger’s equation both forward and backward in time – a point made by Schrodinger himself. Superposition makes perfect sense in Hilbert space if time doesn’t exist. Feynman’s path integral method assumes all paths are possible but most of them cancel each other out and we are left with the most probable path. He demonstrates this most efficaciously when he explains mirror reflection using quantum mechanics (as expounded in his book, QED).
For a photon of light, time is zero, and light is arguably the most commonly known quantum phenomenon that we witness all the time. We know that light has a finite velocity, otherwise, as someone pointed out (Caspar Henderson in A New Map of Wonders), everything would happen at once. A photon of light could literally see the entire life of the universe in its lifetime, which is zero from its perspective. Light is effectively in the future until it interacts with matter, as Bragg inferred.
Einstein discovered, mathematically, as opposed to empirically, that time is fluid, which means it passes at different rates depending on the observer. It’s gravity that ultimately determines the rate of time, because a particle (any particle) in free fall follows maximum relativistic time (as expounded by Feynman in another book, Six Not-So-Easy Pieces). Any deviation from free fall means that time will slow down, and that’s Einstein’s theories of relativity (both of them) in a nutshell.
Now, you may think that if time ‘flows’ at different rates in different locations then they must all have different ‘nows’ but there is no logical reason for that. Quantum entanglement suggests that now can exist across the Universe, even though Einstein himself never accepted that possibility.
In fact, Einstein argued that the now that we all experience is totally subjective – there is no objective now. I think that the finite age of the Universe, along with quantum entanglement, suggests that he was wrong, but others will work that out in the future, one way or another.
But the now that everyone experiences is a consequence of consciousness, because only consciousness surfs on a constant now.
Addendum 1: Loop quantum gravity theorist, Carlo Rovelli, has defined ‘now’ as the 'edge of the big bang', and that is as good a definition of an 'objective now' as you will find. An objective now can be translated or frozen in time like when you take a photograph or the background cosmic radiation, which is 380,000 years after the big bang (or thereabouts). In other words, objective ‘nows’ are relational as opposed to the present which becomes the past as soon as it arrives, except to sentient creatures like us.
Addendum 2: Roger Penrose, whose comprehension and discussion of quantum mechanics makes my ruminations appear simplistic, uses a metaphor of a mermaid sitting between the sea and the land to represent the relationship between QM and classical physics. He consistently talks about QM in 3 phases: U, R and C. U is the evolution of the wave function (described by Schrodinger’s equation in Hilbert Space). R is the 'decoherence' of the wave function, usually in the form of a measurement or observation. And C is classical physics, or the real world, where the detection takes place. U, R and C represent a sequence, which is consistent with my thesis that, relationally, QM is the future and classical physics is the past.
Addendum 3: Carlo Rovelli (refer Addendum 1) has said that ‘at a fundamental level, time disappears’, which is a well known mathematical conundrum in quantum cosmology (refer Paul Davies in The Goldilocks Enigma). My point would be that if you were looking into the future, you’d expect time to disappear.
Philosophy, at its best, challenges our long held views, such that we examine them more deeply than we might otherwise consider.
Paul P. Mealing
- Paul P. Mealing
- Check out my book, ELVENE. Available as e-book and as paperback (print on demand, POD). Also this promotional Q&A on-line.
Monday, 26 February 2018
Saturday, 3 February 2018
My Heroes
Most people have heroes – usually sporting heroes, sometimes war heroes and sometimes political heroes. Well, I have heroes of science and philosophy.
Probably my earliest hero was Albert Einstein. To give a bit of backstory, in my preteens I had already taken an interest in science, but really it was zoology and animals of any description. People (relatives) used to give me books on animals all the time and I spent a lot of time drawing pictures of them as well as reading about them. But one day, and I can remember it vividly, as in where I was (not at home) and who gave it to me, I was given a book on The Atom. I was somewhere between 10 and 12, so it coincided roughly with when I started high school and it set the direction of my inquiring mind for ever.
So when I was 15 or 16, my mind was ripe when I saw a documentary on Albert Einstein on our black and white TV, probably produced by the BBC. I was smitten not only by the man’s genius but also his eccentricities and his obvious disregard for what people thought of his appearance. For example, he didn't wear socks. I also admired his courage for his pacifist stance, even though he famously wrote a letter to Roosevelt advocating the development of an atomic bomb before Germany did. His life was full of contradictions and paradoxes. He was a Jew yet agnostic, he was a pacifist yet came up with the famous equation that allows nuclear fission to occur, and his theories of relativity are paradoxes incarnate: time and space can shrink if you travel fast enough. I remember thinking all these things from watching that programme. And I can remember for the first time someone explaining that Einstein deduced that gravity wasn’t a force but a curve in spacetime. I found that so outlandish that it took many years (decades) before I properly understood it.
I’ve written elsewhere on this blog, an exposition of his general theory of relativity, which I took mostly from Richard Feynman’s excellent book, Six Not-So-Easy Pieces. Einstein got some things wrong but that does not diminish the man’s stature. Having said that, I think he had a better understanding of quantum mechanics than people give him credit for, and one should remember that he coined the term ‘photon’ to explain the photo-electric effect, which is purely a quantum phenomenon. But I think he was wrong to believe that the world is totally deterministic with no room for free will.
Regarding his famous theories of relativity: the special theory and the general theory; I would argue that you can’t have one without the other. In fact, I’ve long contended (though others may differ) that the paradoxes inherent in the special theory of relativity can only be resolved with the general theory. From my perspective, I found it necessary to come to grips with the general theory before the special theory, even though Einstein published them in the reverse order with a 10 year gap in between.
Of course, heroes have heroes of their own, and Einstein’s heroes were Newton, Maxwell and Faraday; all of whom occupied my mind in my early years learning about physics.
In that golden age of physics, as it’s often called, there were many luminaries: Niels Bohr, Max Planck, Werner Heisenberg, Erwin Schrodinger, Louis de Broglie, Wolfgang Pauli and Max Born. These are the best known involved in the emerging field of quantum mechanics, which also included Einstein. Out of these, I would give special mention to Erwin Schrodinger, not just because of his eponymous equation but because his mind ranged outside his field into biology and the Hindu text, the Vedas (of which I know nothing). In particular, he wrote a short tome called What is Life? which includes a chapter on the mind.
Schrodinger’s equation is all the more remarkable because it was suppositional. As Feynman once said: ‘It can’t be derived from anything we know.’ Yet it's been called 'the most important equation in all of mathematical physics' by John Barrow (amongst others) because it give us the energy levels of electrons in matter, which gives us all of chemistry. The wave function which lies at the heart of Schrodinger's equation and QED (Feynman’s own integral path method of QM) is an enigma in itself. It exists in Hilbert space, an abstract domain of possibly infinite dimensions and it’s disputable whether it has a physical significance or is just a convenient mathematical fiction. It effectively underpins everything we can see and touch, but not gravity apparently. Richard Elwes in his book, Maths 1001, says that ‘The Schrodinger equation is not limited to the wave functions of individual particles, but… potentially the wave function of the entire universe.’
Alan Turing is a hero of mine, whose life was cut short because he was prosecuted (and persecuted) for being homosexual, yet he was one of the greatest minds, not only of the 20th Century, but in the history of science. He’s most famously known for his pivotal role in deciphering the German enigma code during WW2. The not-so-recent movie (2014), The Imitation Game, starring Benedict Cumberbatch, was a travesty in my view, which is not a reflection on Cumberbatch but the producers and writers of the film.
Alan Turing was first a logician and he came up with the concept of the modern computer as a thought experiment to solve a mathematical conundrum, called the ‘halting problem’. Basically he proved that a machine (computer) could not solve algorithmically if a particular problem could be solved by the computer or not. To give an example: the Riemann hypothesis, which states that all complex roots (zeros) of the Zeta function are of the form ½ + ib. I’ve explained this in more detail elsewhere, but it is the most famous unsolved problem in mathematics since 1859, when Riemann proposed it as a method for determining the number of prime numbers up to any given Real number.
The point is that these zeros can be calculated on a computer, and have been in to the trillions, but of course they can’t be computed to infinity unless you have an infinite amount of time. What Turing proved generally (not just for Riemann’s hypothesis) is that you can’t determine in advance if the computer will stop or not. Obviously, if the computer stops the hypothesis is false.
So I would select these 3 as my 20th Century heroes. Now this is purely subjective and therefore I feel compelled to give reasons or criteria for my choices. A hero is someone who inspires you and to whom you may feel an affinity or someone you aspire to emulate. All these men had faults, though Turing, ironically, was possibly the least egotistical of them and the most respectful to the opposite sex. He was quite open about his homosexuality at a time when it was considered a psychiatric illness and a criminal activity. All 3 of them were geniuses beyond question, and they all impacted the 20th Century in ways that most of us are unaware of.
Alfred Wallace and Charles Darwin are heroes because they challenged orthodoxy and are still under siege, one might say, by certain elements of the Christian church. It’s what’s been discovered in the 150 years since their time that both illuminates their theories and uncovers even greater mysteries, which is the nature of science that not only includes evolutionary biology but cosmology and quantum mechanics. Science is constantly creating new frontiers by overcoming existing ones. The difference with evolution is that it challenges long held religious tenets. Quantum mechanics is far more weird and counter-intuitive than evolution but no one denies it because it doesn’t challenge the premise that ‘man’ was made in God’s image.
Wallace and Darwin were very respectful of each other, but what I liked about Wallace, in particular, was that he was more of an amateur, an outsider, than Darwin was, but drew the same conclusions. Both men travelled to ‘exotic’ locations (including Australia, it has to be said) and discovered fauna and flora that led them to a theory of evolution by natural selection. We know that there is more to it than that, and it’s not totally resolved as many would have you believe, but I still call evolution a ‘fact’, based on the simple expediency that everything that’s been discovered since their time, that has proved them right, could just as readily have proved them wrong.
I would like to include this quote from Alfred Wallace, which I lifted from Tim Flannery’s book, The Weather Makers (about climate change):
It is among those nations that claim to be the most civilised, those that profess to be guided by a knowledge of laws of nature, those that most glory in the advance of science, that we find the greatest apathy, the greatest recklessness, in continually rendering impure this all-important necessity of life… (from Man’s Place in the Universe, 1903).
It makes me want to read his entire treatise.
As far as mathematicians go, I would include Euler as well as Riemann, whom I’ve already mentioned. Euler’s famous ‘identity’, which I’ve written about elsewhere, is arguably the most famous formula in mathematics and Feynman called it ‘the most remarkable formula in math’ when he discovered it for himself just a month before his 15th birthday. Yes, Feynman was a genius in his own right too. The number e, which is the base of the natural logarithm and gives the rate of compound interest if it’s done continuously, and is the most famous transcendental number after π, was named after Euler and is called Euler’s constant. Euler, by the way is pronounced ‘oiler’. Euler is acknowledged as the most prolific mathematician ever, but his eponymous equation which gives us his famous ‘identity’ is key to Schrodinger’s wave equation, so they are linked.
Riemann’s life was relatively short, but not only did he give us the Riemann Hypothesis, which seems to find its way into innumerable branches of mathematics, he also gave us non-Euclidean geometry which lies at the heart of Einstein’s general theory of relativity, so they are linked as well.
Special mentions need to go to Fermat and Gauss, who is called the greatest mathematician ever and was a mentor to Riemann. Fermat is best known for his famous ‘last theorem’ finally resolved by Andrew Wiles 357 years later. But he’s also known for his work on refraction (of light through glass and water) and his ‘least action’ principle which had a profound influence on the aforementioned Feynman. In fact, it’s Feynman’s employment of the least action principle to explain how gravity works that unlocked the secret to Einstein’s general theory of relativity (for me). Feynman also used this principle in his QED (quantum electrodynamics) and it’s called a Lagrangian, mathematically.
I could keep on going but I’m going to stop with the ancient Greeks, specifically Pythagoras, Socrates, Plato and Aristotle. These are all connected, because Socrates was a teacher to Plato and Plato was a teacher to Aristotle, whilst Plato’s famous ‘Academy’ was set up using Pythagoras’s quadrivium of arithmetic, geometry, music and astronomy. Aristotle, famously, was teacher to Alexander the Great but also influenced science and philosophy up until the renaissance.
About 3 decades ago I saw a documentary on Pythagoras and Plato which was an epiphany for me and started me on the path to becoming a self-declared mathematical Platonist, which has only strengthened with time. And this leads me in a strange time warp way to Roger Penrose, who is arguably the only living person I might declare a hero, because this is something I believe we share. Penrose is a bit of an iconoclast and I seem to like that in my philosophers. I don’t agree with everything he believes but no one does, or should, when it comes to philosophy. I don’t believe in gurus in any school or forum. Penrose is just as prominent in mathematics as he is in physics and he is a true philosopher. I would put Paul Davies in this category as well, whom I admire and write about often. But Penrose’s 3 worlds philosophy is one that I’ve adopted as my own and I must therefore give him due recognition. And from that perspective, I think Penrose would acknowledge his debt to Pythagoras and Plato.
I wrote a recent post (just prior to Christmas) on Socrates, whom I called ‘the first philosopher’, which I admit is a bit of a stretch depending on many parameters, not least how one defines philosophy. But to put it in perspective, I described philosophy as ‘argument augmented by analysis’, because I like to believe that’s what I do. But if anything, I would aspire to be a modern ‘Socratic’ philosopher in that I would like to make people think outside their usual bounds, because I think that’s what Socrates did and it got him into serious trouble because he got young people, in particular, to challenge the status quo.
We live in a time when we are very divided politically and I think it’s more important than ever to learn about opposing views. As a philosopher, you can’t deconstruct your opponents’ arguments if you haven’t read them or heard them. Every weekend I buy 2 newspapers – one that ostensibly represents the political left and one that ostensibly represents the political right. Strange as it may seem, I find I read more of the right-leaning paper than its counterpart, because I want to know what people who have opposing views to mine are thinking and arguing.
At the head of my blog, right from its inception, I wrote a little aphorism which I believe sums up philosophy as it should be. I never expect to change people’s beliefs to mine but I do expect to make them think. I would like to think that’s what Socrates did.
Probably my earliest hero was Albert Einstein. To give a bit of backstory, in my preteens I had already taken an interest in science, but really it was zoology and animals of any description. People (relatives) used to give me books on animals all the time and I spent a lot of time drawing pictures of them as well as reading about them. But one day, and I can remember it vividly, as in where I was (not at home) and who gave it to me, I was given a book on The Atom. I was somewhere between 10 and 12, so it coincided roughly with when I started high school and it set the direction of my inquiring mind for ever.
So when I was 15 or 16, my mind was ripe when I saw a documentary on Albert Einstein on our black and white TV, probably produced by the BBC. I was smitten not only by the man’s genius but also his eccentricities and his obvious disregard for what people thought of his appearance. For example, he didn't wear socks. I also admired his courage for his pacifist stance, even though he famously wrote a letter to Roosevelt advocating the development of an atomic bomb before Germany did. His life was full of contradictions and paradoxes. He was a Jew yet agnostic, he was a pacifist yet came up with the famous equation that allows nuclear fission to occur, and his theories of relativity are paradoxes incarnate: time and space can shrink if you travel fast enough. I remember thinking all these things from watching that programme. And I can remember for the first time someone explaining that Einstein deduced that gravity wasn’t a force but a curve in spacetime. I found that so outlandish that it took many years (decades) before I properly understood it.
I’ve written elsewhere on this blog, an exposition of his general theory of relativity, which I took mostly from Richard Feynman’s excellent book, Six Not-So-Easy Pieces. Einstein got some things wrong but that does not diminish the man’s stature. Having said that, I think he had a better understanding of quantum mechanics than people give him credit for, and one should remember that he coined the term ‘photon’ to explain the photo-electric effect, which is purely a quantum phenomenon. But I think he was wrong to believe that the world is totally deterministic with no room for free will.
Regarding his famous theories of relativity: the special theory and the general theory; I would argue that you can’t have one without the other. In fact, I’ve long contended (though others may differ) that the paradoxes inherent in the special theory of relativity can only be resolved with the general theory. From my perspective, I found it necessary to come to grips with the general theory before the special theory, even though Einstein published them in the reverse order with a 10 year gap in between.
Of course, heroes have heroes of their own, and Einstein’s heroes were Newton, Maxwell and Faraday; all of whom occupied my mind in my early years learning about physics.
In that golden age of physics, as it’s often called, there were many luminaries: Niels Bohr, Max Planck, Werner Heisenberg, Erwin Schrodinger, Louis de Broglie, Wolfgang Pauli and Max Born. These are the best known involved in the emerging field of quantum mechanics, which also included Einstein. Out of these, I would give special mention to Erwin Schrodinger, not just because of his eponymous equation but because his mind ranged outside his field into biology and the Hindu text, the Vedas (of which I know nothing). In particular, he wrote a short tome called What is Life? which includes a chapter on the mind.
Schrodinger’s equation is all the more remarkable because it was suppositional. As Feynman once said: ‘It can’t be derived from anything we know.’ Yet it's been called 'the most important equation in all of mathematical physics' by John Barrow (amongst others) because it give us the energy levels of electrons in matter, which gives us all of chemistry. The wave function which lies at the heart of Schrodinger's equation and QED (Feynman’s own integral path method of QM) is an enigma in itself. It exists in Hilbert space, an abstract domain of possibly infinite dimensions and it’s disputable whether it has a physical significance or is just a convenient mathematical fiction. It effectively underpins everything we can see and touch, but not gravity apparently. Richard Elwes in his book, Maths 1001, says that ‘The Schrodinger equation is not limited to the wave functions of individual particles, but… potentially the wave function of the entire universe.’
Alan Turing is a hero of mine, whose life was cut short because he was prosecuted (and persecuted) for being homosexual, yet he was one of the greatest minds, not only of the 20th Century, but in the history of science. He’s most famously known for his pivotal role in deciphering the German enigma code during WW2. The not-so-recent movie (2014), The Imitation Game, starring Benedict Cumberbatch, was a travesty in my view, which is not a reflection on Cumberbatch but the producers and writers of the film.
Alan Turing was first a logician and he came up with the concept of the modern computer as a thought experiment to solve a mathematical conundrum, called the ‘halting problem’. Basically he proved that a machine (computer) could not solve algorithmically if a particular problem could be solved by the computer or not. To give an example: the Riemann hypothesis, which states that all complex roots (zeros) of the Zeta function are of the form ½ + ib. I’ve explained this in more detail elsewhere, but it is the most famous unsolved problem in mathematics since 1859, when Riemann proposed it as a method for determining the number of prime numbers up to any given Real number.
The point is that these zeros can be calculated on a computer, and have been in to the trillions, but of course they can’t be computed to infinity unless you have an infinite amount of time. What Turing proved generally (not just for Riemann’s hypothesis) is that you can’t determine in advance if the computer will stop or not. Obviously, if the computer stops the hypothesis is false.
So I would select these 3 as my 20th Century heroes. Now this is purely subjective and therefore I feel compelled to give reasons or criteria for my choices. A hero is someone who inspires you and to whom you may feel an affinity or someone you aspire to emulate. All these men had faults, though Turing, ironically, was possibly the least egotistical of them and the most respectful to the opposite sex. He was quite open about his homosexuality at a time when it was considered a psychiatric illness and a criminal activity. All 3 of them were geniuses beyond question, and they all impacted the 20th Century in ways that most of us are unaware of.
Alfred Wallace and Charles Darwin are heroes because they challenged orthodoxy and are still under siege, one might say, by certain elements of the Christian church. It’s what’s been discovered in the 150 years since their time that both illuminates their theories and uncovers even greater mysteries, which is the nature of science that not only includes evolutionary biology but cosmology and quantum mechanics. Science is constantly creating new frontiers by overcoming existing ones. The difference with evolution is that it challenges long held religious tenets. Quantum mechanics is far more weird and counter-intuitive than evolution but no one denies it because it doesn’t challenge the premise that ‘man’ was made in God’s image.
Wallace and Darwin were very respectful of each other, but what I liked about Wallace, in particular, was that he was more of an amateur, an outsider, than Darwin was, but drew the same conclusions. Both men travelled to ‘exotic’ locations (including Australia, it has to be said) and discovered fauna and flora that led them to a theory of evolution by natural selection. We know that there is more to it than that, and it’s not totally resolved as many would have you believe, but I still call evolution a ‘fact’, based on the simple expediency that everything that’s been discovered since their time, that has proved them right, could just as readily have proved them wrong.
I would like to include this quote from Alfred Wallace, which I lifted from Tim Flannery’s book, The Weather Makers (about climate change):
It is among those nations that claim to be the most civilised, those that profess to be guided by a knowledge of laws of nature, those that most glory in the advance of science, that we find the greatest apathy, the greatest recklessness, in continually rendering impure this all-important necessity of life… (from Man’s Place in the Universe, 1903).
It makes me want to read his entire treatise.
As far as mathematicians go, I would include Euler as well as Riemann, whom I’ve already mentioned. Euler’s famous ‘identity’, which I’ve written about elsewhere, is arguably the most famous formula in mathematics and Feynman called it ‘the most remarkable formula in math’ when he discovered it for himself just a month before his 15th birthday. Yes, Feynman was a genius in his own right too. The number e, which is the base of the natural logarithm and gives the rate of compound interest if it’s done continuously, and is the most famous transcendental number after π, was named after Euler and is called Euler’s constant. Euler, by the way is pronounced ‘oiler’. Euler is acknowledged as the most prolific mathematician ever, but his eponymous equation which gives us his famous ‘identity’ is key to Schrodinger’s wave equation, so they are linked.
Riemann’s life was relatively short, but not only did he give us the Riemann Hypothesis, which seems to find its way into innumerable branches of mathematics, he also gave us non-Euclidean geometry which lies at the heart of Einstein’s general theory of relativity, so they are linked as well.
Special mentions need to go to Fermat and Gauss, who is called the greatest mathematician ever and was a mentor to Riemann. Fermat is best known for his famous ‘last theorem’ finally resolved by Andrew Wiles 357 years later. But he’s also known for his work on refraction (of light through glass and water) and his ‘least action’ principle which had a profound influence on the aforementioned Feynman. In fact, it’s Feynman’s employment of the least action principle to explain how gravity works that unlocked the secret to Einstein’s general theory of relativity (for me). Feynman also used this principle in his QED (quantum electrodynamics) and it’s called a Lagrangian, mathematically.
I could keep on going but I’m going to stop with the ancient Greeks, specifically Pythagoras, Socrates, Plato and Aristotle. These are all connected, because Socrates was a teacher to Plato and Plato was a teacher to Aristotle, whilst Plato’s famous ‘Academy’ was set up using Pythagoras’s quadrivium of arithmetic, geometry, music and astronomy. Aristotle, famously, was teacher to Alexander the Great but also influenced science and philosophy up until the renaissance.
About 3 decades ago I saw a documentary on Pythagoras and Plato which was an epiphany for me and started me on the path to becoming a self-declared mathematical Platonist, which has only strengthened with time. And this leads me in a strange time warp way to Roger Penrose, who is arguably the only living person I might declare a hero, because this is something I believe we share. Penrose is a bit of an iconoclast and I seem to like that in my philosophers. I don’t agree with everything he believes but no one does, or should, when it comes to philosophy. I don’t believe in gurus in any school or forum. Penrose is just as prominent in mathematics as he is in physics and he is a true philosopher. I would put Paul Davies in this category as well, whom I admire and write about often. But Penrose’s 3 worlds philosophy is one that I’ve adopted as my own and I must therefore give him due recognition. And from that perspective, I think Penrose would acknowledge his debt to Pythagoras and Plato.
I wrote a recent post (just prior to Christmas) on Socrates, whom I called ‘the first philosopher’, which I admit is a bit of a stretch depending on many parameters, not least how one defines philosophy. But to put it in perspective, I described philosophy as ‘argument augmented by analysis’, because I like to believe that’s what I do. But if anything, I would aspire to be a modern ‘Socratic’ philosopher in that I would like to make people think outside their usual bounds, because I think that’s what Socrates did and it got him into serious trouble because he got young people, in particular, to challenge the status quo.
We live in a time when we are very divided politically and I think it’s more important than ever to learn about opposing views. As a philosopher, you can’t deconstruct your opponents’ arguments if you haven’t read them or heard them. Every weekend I buy 2 newspapers – one that ostensibly represents the political left and one that ostensibly represents the political right. Strange as it may seem, I find I read more of the right-leaning paper than its counterpart, because I want to know what people who have opposing views to mine are thinking and arguing.
At the head of my blog, right from its inception, I wrote a little aphorism which I believe sums up philosophy as it should be. I never expect to change people’s beliefs to mine but I do expect to make them think. I would like to think that’s what Socrates did.
Wednesday, 31 January 2018
Ursula K Le Guin - 21 October 1929 to 22 January 2018
I need to say something about Ursula Le Guin, as she was an inspiration to a generation of writers of fantasy and science fiction, including nonentities like yours truly and celebrated award-winning masters of their art like Neil Gaiman, who presented her with a Life Time Achievement Award at the 2014 American National Book Awards.
Ursula Le Guin was something of an oddity in that she was a famously successful author in the fantasy and sci-fi genre when it was dominated by male authors, well before J.K. Rowling came on the scene.
Left Hand of Darkness and The Dispossessed are possibly her best known works along with the Earthsea quartet, which is my personal favourite.
Below is the speech by Neil Gaiman, who describes her influence on his own writing, and Ursula's 'thank you' speech, where she laments the state of publishing and its corrosive effect on artistic freedom, as she sees it.
It is fair to say that she had an influence on my own writing, and perhaps I am lucky to have avoided the corporate publishing machine, if they have the influence over one's creative work as she infers.
I like this quote attributed to her:
It is good to have an end to journey towards; but it is the journey that matters in the end.
Ursula Le Guin was something of an oddity in that she was a famously successful author in the fantasy and sci-fi genre when it was dominated by male authors, well before J.K. Rowling came on the scene.
Left Hand of Darkness and The Dispossessed are possibly her best known works along with the Earthsea quartet, which is my personal favourite.
Below is the speech by Neil Gaiman, who describes her influence on his own writing, and Ursula's 'thank you' speech, where she laments the state of publishing and its corrosive effect on artistic freedom, as she sees it.
It is fair to say that she had an influence on my own writing, and perhaps I am lucky to have avoided the corporate publishing machine, if they have the influence over one's creative work as she infers.
I like this quote attributed to her:
It is good to have an end to journey towards; but it is the journey that matters in the end.
Wednesday, 24 January 2018
Science, humanities and politics
I was reading recently in New Scientist (20 Jan., 2018) about the divide between humanities and science, which most of us don’t even think about. In an unrelated article in The Weekend Australian Review (6-7 Jan., 2018) there was a review of a biography by Walter Isaacson, Leonardo da Vinci, whose subject is arguably the greatest polymath known to Western civilisation, and who clearly straddled that divide with consummate ease. One suspects that said divide didn’t really exist in Leonardo’s day and one wonders what changed.
Specialisation is one answer, but it’s not sufficient I would suggest. When trying to think of a more modern example, Isaac Asimov came to mind, though being a Sci-Fi writer myself, that’s not surprising. As well as being a very prolific writer (more than 500 books) he was professor of biochemistry at Boston University.
I’m no Asimov in either field, yet to some extent I believe I straddle this so-called divide without excelling in either science or arts. I can remember reading A Terrible Beauty by Peter Watson, which was an extraordinary compiled history of the 20th Century that focused on the ideas and the people who produced them rather than the politics or the many conflicts that we tend to associate with that century. The reason I mention this outstanding and well written tome is that I was struck by Watson’s ability to discuss art and science with equal erudition and acumen. Watson, from memory, was more of a journalist than a scholar, but this diverse scholasticism, for want of a better phrase, I thought a most unusual trait in the modern world.
As anyone who reads this blog has probably deduced, my primary ambition as a youth was to become a physicist. As someone who can look back over many decades of life, I’m not especially disappointed that I didn’t realise that ambition. My other youthful ambition was to become a writer of fiction and once again I’m not especially disappointed that I didn’t succeed. I can’t complain as I was able to make a decent living in the engineering and construction industry in a non-technical capacity. It allowed me to work on diverse projects and interact with very clever people on a professional level.
But this post is not about me, even though I’m trying to understand why I don’t perceive this divide (in quite the same way others do) that clearly delineates our society. We have technical people who make all the stuff we take for granted and then we have artistic people who make all the stuff that entertains us, which is so ubiquitous we tend to take that for granted as well. Of course, I haven’t mentioned the legions of sportspeople who become our heroes in whatever country we live in. They don’t fit into the categories of humanities and science yet they dominate our consciousness when they take to the field.
The other point that can’t be ignored is the politicisation of both humanities and science in the modern world. Artists are often, but not always, associated with left wing politics. People are often unaware that there is a genetic disposition to our political inclinations. I’m unusual in my family for leaning to the left, but I’m also unusual in having artistic proclivities that I inherited from my mother’s side. Artists have often in the past been associated with a bohemian lifestyle but also with being more open and tolerant of difference. One should remember that homosexuals have long been accepted in theatre in a way they weren’t in society at large, even when it was criminalised.
This is not to say that all artists are left wing, as they clearly aren’t, but it’s interesting that the left side of politics seems to be more generous towards the arts (at least in Australia) than their oppositional counterparts. But politics doesn’t explain the humanities science divide. Science has become politicised recently with the issue of climate change. According to the political right, climate change is a conspiracy and fraudulent propaganda by scientists to keep themselves in jobs. This came to a head in 2016 in Australia when, under a Turnbull Liberal government (still in office), a prominent, world-wide respected climatologist at CSIRO (John Church) was sacked and his department eviscerated on the excuse that the Paris Accord had found the answer to climate change and no more research was necessary – we needed solutions not more research. It should be pointed out that, subjected to international outrage, the sackings were reduced from over 100 to more like 30, but John Church still lost his job. This, in spite of the fact that “CSIRO has long led the world in modelling Southern Hemisphere climate.” (Peter Boyer, Independent Australia, 20 May 2016).
What I like to point out is that the politicisation of climate change is largely by non-scientists and not scientists. As far as most scientists are concerned science itself is largely politically neutral. Now I know many people will dispute this very viewpoint because science is generally seen as a tool to provide technological solutions which are to the benefit of society at large. And one might qualify that by specifying Western society, though Asia is also adopting technologies at an accelerated rate. In other words, science is politically driven to the extent that politicians decide what technologies would benefit us most. And I agree that, as far as most politicians are concerned, science is simply a tool in the service of economics.
But my point is that, contrary to the polemic of right wing politicians, all climatologists are not left wing political conspirators. Scientists studying climate change could be of any political persuasion. As far as they are concerned nature doesn’t have a political agenda, only humans do.
To take another couple of examples where the politics is on the opposite side yet equally anti-science. Genetically engineered crops are demonised by many people on the political left, who conflate science and technology with corporate greed. Likewise anti-vaccination activists are also associated with the political left. What all these anti-science proponents have in common is their collective ignorance of science. They all see science as a conspiratorial propaganda machine whilst never considering the role science has played in giving them the historically unprecedented lifestyle that they take for granted.
I’ve never talked about my job (what I do for a living) on this blog before, but I’m going to because it’s relevant in an oblique way. I’m a project planner on generally very high tech, complex manufacturing and infrastructure projects. There are 2 parts to my job: planning for the future (in the context of the project); and predicting the future. It should be obvious that you can’t do one without the other. I like to think I’m good at my job because over a period of decades I’ve become better at predicting the future in that particular context; it’s a combination of science and experience. Of course, my predictions are not always well received but I’ve found that integrity is more valuable in the long term than acquiescence.
The relevance of this professional vanity to the subject at hand is that science is very good at predicting natural events and this is the specific nature of the issue of climate change. The process of democracy, which we see as underpinning both our governments and our societies at large, effectively undermines scientific predictions when they are negative. Politicians know that it’s suicide at the polls to say anything negative which is why they only do so when it’s already happened.
To return to the New Scientist article that initiated this meditation, it’s actually a book review (Being Ecological by Timothy Morton) reviewed by Ben Collyer (which I haven’t read). According to Morton, as related by Collyer, it’s the divide between humanities and science that is part of the problem in that people are ignorant of the science that’s telling us the damage we are doing on a global scale. Collyer also reviews Our Oldest Task: Making Sense of Our Place in Nature by Eric T Freyfogle (not read by me either) and Collyer intermingles them in his discussion. Basically, since the emergence of agriculture and the dominant religions we see ourselves as separate from nature. This is a point that Jeremy Lent also makes in The Patterning Instinct (which I have read).
We call this the Anthropocene era and we are increasingly insulating ourselves from the natural world though technology, which I find a paradox. Why a paradox? Because technology is born out of science, and science, by definition and in practice, is the study of the natural world in all its manifestations. We are on an economically driven treadmill that delegates science to technological inventions whose prime purpose is to feed consumerism by promising us lives of unprecedented affluence. This is explored in recent books, Homo Deus by Yuval Noah Harari (which I recently reviewed) and Utopia for Realists by Rutger Bregman (which I’ve read but not reviewed). I would argue that we are making the wrong types of sacrifices in order to secure our future. A future that ignores the rest of nature or is premised on the unacknowledged belief that we are independent of nature cannot be sustained indefinitely. The collapse of civilisations in the past are testament to this folly.
Specialisation is one answer, but it’s not sufficient I would suggest. When trying to think of a more modern example, Isaac Asimov came to mind, though being a Sci-Fi writer myself, that’s not surprising. As well as being a very prolific writer (more than 500 books) he was professor of biochemistry at Boston University.
I’m no Asimov in either field, yet to some extent I believe I straddle this so-called divide without excelling in either science or arts. I can remember reading A Terrible Beauty by Peter Watson, which was an extraordinary compiled history of the 20th Century that focused on the ideas and the people who produced them rather than the politics or the many conflicts that we tend to associate with that century. The reason I mention this outstanding and well written tome is that I was struck by Watson’s ability to discuss art and science with equal erudition and acumen. Watson, from memory, was more of a journalist than a scholar, but this diverse scholasticism, for want of a better phrase, I thought a most unusual trait in the modern world.
As anyone who reads this blog has probably deduced, my primary ambition as a youth was to become a physicist. As someone who can look back over many decades of life, I’m not especially disappointed that I didn’t realise that ambition. My other youthful ambition was to become a writer of fiction and once again I’m not especially disappointed that I didn’t succeed. I can’t complain as I was able to make a decent living in the engineering and construction industry in a non-technical capacity. It allowed me to work on diverse projects and interact with very clever people on a professional level.
But this post is not about me, even though I’m trying to understand why I don’t perceive this divide (in quite the same way others do) that clearly delineates our society. We have technical people who make all the stuff we take for granted and then we have artistic people who make all the stuff that entertains us, which is so ubiquitous we tend to take that for granted as well. Of course, I haven’t mentioned the legions of sportspeople who become our heroes in whatever country we live in. They don’t fit into the categories of humanities and science yet they dominate our consciousness when they take to the field.
The other point that can’t be ignored is the politicisation of both humanities and science in the modern world. Artists are often, but not always, associated with left wing politics. People are often unaware that there is a genetic disposition to our political inclinations. I’m unusual in my family for leaning to the left, but I’m also unusual in having artistic proclivities that I inherited from my mother’s side. Artists have often in the past been associated with a bohemian lifestyle but also with being more open and tolerant of difference. One should remember that homosexuals have long been accepted in theatre in a way they weren’t in society at large, even when it was criminalised.
This is not to say that all artists are left wing, as they clearly aren’t, but it’s interesting that the left side of politics seems to be more generous towards the arts (at least in Australia) than their oppositional counterparts. But politics doesn’t explain the humanities science divide. Science has become politicised recently with the issue of climate change. According to the political right, climate change is a conspiracy and fraudulent propaganda by scientists to keep themselves in jobs. This came to a head in 2016 in Australia when, under a Turnbull Liberal government (still in office), a prominent, world-wide respected climatologist at CSIRO (John Church) was sacked and his department eviscerated on the excuse that the Paris Accord had found the answer to climate change and no more research was necessary – we needed solutions not more research. It should be pointed out that, subjected to international outrage, the sackings were reduced from over 100 to more like 30, but John Church still lost his job. This, in spite of the fact that “CSIRO has long led the world in modelling Southern Hemisphere climate.” (Peter Boyer, Independent Australia, 20 May 2016).
What I like to point out is that the politicisation of climate change is largely by non-scientists and not scientists. As far as most scientists are concerned science itself is largely politically neutral. Now I know many people will dispute this very viewpoint because science is generally seen as a tool to provide technological solutions which are to the benefit of society at large. And one might qualify that by specifying Western society, though Asia is also adopting technologies at an accelerated rate. In other words, science is politically driven to the extent that politicians decide what technologies would benefit us most. And I agree that, as far as most politicians are concerned, science is simply a tool in the service of economics.
But my point is that, contrary to the polemic of right wing politicians, all climatologists are not left wing political conspirators. Scientists studying climate change could be of any political persuasion. As far as they are concerned nature doesn’t have a political agenda, only humans do.
To take another couple of examples where the politics is on the opposite side yet equally anti-science. Genetically engineered crops are demonised by many people on the political left, who conflate science and technology with corporate greed. Likewise anti-vaccination activists are also associated with the political left. What all these anti-science proponents have in common is their collective ignorance of science. They all see science as a conspiratorial propaganda machine whilst never considering the role science has played in giving them the historically unprecedented lifestyle that they take for granted.
I’ve never talked about my job (what I do for a living) on this blog before, but I’m going to because it’s relevant in an oblique way. I’m a project planner on generally very high tech, complex manufacturing and infrastructure projects. There are 2 parts to my job: planning for the future (in the context of the project); and predicting the future. It should be obvious that you can’t do one without the other. I like to think I’m good at my job because over a period of decades I’ve become better at predicting the future in that particular context; it’s a combination of science and experience. Of course, my predictions are not always well received but I’ve found that integrity is more valuable in the long term than acquiescence.
The relevance of this professional vanity to the subject at hand is that science is very good at predicting natural events and this is the specific nature of the issue of climate change. The process of democracy, which we see as underpinning both our governments and our societies at large, effectively undermines scientific predictions when they are negative. Politicians know that it’s suicide at the polls to say anything negative which is why they only do so when it’s already happened.
To return to the New Scientist article that initiated this meditation, it’s actually a book review (Being Ecological by Timothy Morton) reviewed by Ben Collyer (which I haven’t read). According to Morton, as related by Collyer, it’s the divide between humanities and science that is part of the problem in that people are ignorant of the science that’s telling us the damage we are doing on a global scale. Collyer also reviews Our Oldest Task: Making Sense of Our Place in Nature by Eric T Freyfogle (not read by me either) and Collyer intermingles them in his discussion. Basically, since the emergence of agriculture and the dominant religions we see ourselves as separate from nature. This is a point that Jeremy Lent also makes in The Patterning Instinct (which I have read).
We call this the Anthropocene era and we are increasingly insulating ourselves from the natural world though technology, which I find a paradox. Why a paradox? Because technology is born out of science, and science, by definition and in practice, is the study of the natural world in all its manifestations. We are on an economically driven treadmill that delegates science to technological inventions whose prime purpose is to feed consumerism by promising us lives of unprecedented affluence. This is explored in recent books, Homo Deus by Yuval Noah Harari (which I recently reviewed) and Utopia for Realists by Rutger Bregman (which I’ve read but not reviewed). I would argue that we are making the wrong types of sacrifices in order to secure our future. A future that ignores the rest of nature or is premised on the unacknowledged belief that we are independent of nature cannot be sustained indefinitely. The collapse of civilisations in the past are testament to this folly.
Tuesday, 9 January 2018
Why is there something rather than nothing (in 400 words)
This is another ‘Question of the Month’ from Philosophy Now (Issue 123, December 2017 / January 2018). My 8th submission, with 6 from 7 previously published. I think this is my best yet, so I’ll be disappointed if it doesn’t get a guernsey. It depends on the other submissions – after all, it’s a competition and they only select 12 or less.
I’ve written on this topic before in a more lengthy post, but enforced brevity and succinctness sharpens one’s focus.
This is arguably the most fundamental question in philosophy. I once heard a respected philosopher (in a debate) say it was the ‘wrong question’, without proffering a ‘right question’. I thought this was a cop-out, not to mention a not-so-subtle evasion. But there are two major aspects to this question, and most attempted answers only address one. We inhabit a universe we believe to be around 14 billion years old, and proto-human consciousness only existed about 6 million years ago, with homo sapiens arriving on the scene only very recently – roughly 200,000 years ago. But here’s the thing: without a conscious entity to perceive the Universe, there might as well be nothing.
Einstein famously said: “The most incomprehensible thing about the Universe is that it’s comprehensible.” Many scientists, if not most, believe that the Universe and our status within it is a freak accident. Paul Davies in his erudite book, The Goldilocks Enigma, calls this interpretation, the ‘absurd universe’. The standard scientific answer to this enigma is that there are a multitude, possibly an infinite number of universes. If this is the case, then there are an infinite number of you and me. The multiverse hypothesis says that all possibilities are equally valid, which doesn’t explain anything, except to say that the freak accident of our existence can only be understood within an endless sea of all possible existences.
A number of physicists and cosmologists have pointed out that there are constants pertaining to fundamental physical laws that permit complex life forms to evolve. Even small variances in these numbers, either up or down, could have made the Universe lifeless. And as cosmologist, John Barrow, has pointed out, the Universe needs to be of the mind-boggling scale we observe to allow time for complex life - meaning us - to evolve. In light of these deductions, Brandon Carter coined and defined two anthropic principles. The weak anthropic principle says that only a universe that contains observers can be observed (which is a tautology). The strong anthropic principle says that only a universe that permits observers to emerge can exist. To be self-realised, a universe requires consciousness, otherwise it’s effectively non-existent; in the same way that a lost manuscript by Shakespeare would be non-existent.
Postscript: I must say that I find it a touch ironic that the most popular 'scientific' answer to this question is that there is an infinite amount of everything. Which may be right, yet we may never know.
Addendum: This was published in Issue 125, April/May 2018 of Philosophy Now. To give due credit, they did some useful edits (to the sequence of presentation rather than the content), most of which I've adopted.
I’ve written on this topic before in a more lengthy post, but enforced brevity and succinctness sharpens one’s focus.
This is arguably the most fundamental question in philosophy. I once heard a respected philosopher (in a debate) say it was the ‘wrong question’, without proffering a ‘right question’. I thought this was a cop-out, not to mention a not-so-subtle evasion. But there are two major aspects to this question, and most attempted answers only address one. We inhabit a universe we believe to be around 14 billion years old, and proto-human consciousness only existed about 6 million years ago, with homo sapiens arriving on the scene only very recently – roughly 200,000 years ago. But here’s the thing: without a conscious entity to perceive the Universe, there might as well be nothing.
Einstein famously said: “The most incomprehensible thing about the Universe is that it’s comprehensible.” Many scientists, if not most, believe that the Universe and our status within it is a freak accident. Paul Davies in his erudite book, The Goldilocks Enigma, calls this interpretation, the ‘absurd universe’. The standard scientific answer to this enigma is that there are a multitude, possibly an infinite number of universes. If this is the case, then there are an infinite number of you and me. The multiverse hypothesis says that all possibilities are equally valid, which doesn’t explain anything, except to say that the freak accident of our existence can only be understood within an endless sea of all possible existences.
A number of physicists and cosmologists have pointed out that there are constants pertaining to fundamental physical laws that permit complex life forms to evolve. Even small variances in these numbers, either up or down, could have made the Universe lifeless. And as cosmologist, John Barrow, has pointed out, the Universe needs to be of the mind-boggling scale we observe to allow time for complex life - meaning us - to evolve. In light of these deductions, Brandon Carter coined and defined two anthropic principles. The weak anthropic principle says that only a universe that contains observers can be observed (which is a tautology). The strong anthropic principle says that only a universe that permits observers to emerge can exist. To be self-realised, a universe requires consciousness, otherwise it’s effectively non-existent; in the same way that a lost manuscript by Shakespeare would be non-existent.
Postscript: I must say that I find it a touch ironic that the most popular 'scientific' answer to this question is that there is an infinite amount of everything. Which may be right, yet we may never know.
Addendum: This was published in Issue 125, April/May 2018 of Philosophy Now. To give due credit, they did some useful edits (to the sequence of presentation rather than the content), most of which I've adopted.
Friday, 22 December 2017
Who and what do you think you are?
I think it’s pretty normal when you start reading a book (talking non-fiction), you tend to take a stance, very early on, of general agreement or opposition. It’s not unlike the well known but often unconscious effect when you appraise someone in the first 10-30 seconds of meeting them.
And this is the case with Yuval Noah Harari’s Homo Deus, in which I found myself constantly arguing with him in the first 70+ pages of its 450+ page length. For a start, I disagree with his thesis (for want of a better term) that our universal pursuit of ‘happiness’ is purely a sensory-based experience, independent of the cause. From what I’ve observed, and experienced personally, the pursuit of sensory pleasure for its own sake leads to disillusionment at best and self-destruction at worst. A recent bio-pic I saw of Eric Clapton (Life in 12 Bars) illustrates this point rather dramatically. I won’t discuss his particular circumstances – just go and see the film; it’s a warts and all confessional.
If one goes as far back as Aristotle, he wrote an entire book on the subject of ‘eudaimonia’ – living a ‘good life’, effectively – under the title, Ethics. Eudaimonia is generally translated as ‘happiness’ but ‘fulfilment’ or ‘contentment’ may be a better translation, though even they can be contentious, if one reads various scholarly appraisals. I’ve argued in the past that the most frustrating endeavours can be the most rewarding – just ask anyone who has raised children. Generally, I find that the more effort one exerts during a process of endeavour, the better the emotional reward in the end. Reward without sacrifice is not much of a reward. Ask anyone who’s won a sporting grand final, or, for that matter, written a novel.
This is a book that will challenge most people’s beliefs somewhere within its pages, and for that reason alone, it’s worth reading. In fact, many people will find it depressing, because a recurring theme or subtext of the book is that in the future humans will become virtually redundant. Redundant may be too strong a word, but leaving aside the obvious possibility that future jobs currently performed by humans may be taken over by AI, Harari claims that our very notion of ‘free will’ and our almost ‘religious’ belief in the sanctity of individualism will become obsolete ideals. He addresses this towards the end of the book, so I’ll do the same. It’s a thick tome with a lot of ideas well presented, so I will concentrate on those that I feel most compelled to address or challenge.
Like my recent review of Jeremy Lent’s The Patterning Instinct, there is a lot that I agree upon in Homo Deus, and I’m the first to admit that many of Harari’s arguments unnerved me because they challenge some of my deeply held beliefs. Given the self-ascribed aphorism that heads my blog, this makes his book a worthy opus for discussion.
Fundamentally, Harari argues that we are really nothing more than biochemical algorithms and he provides very compelling arguments to justify this. Plus he devotes an entire chapter deconstructing the widely held and cherished notion that we have free will. I’ve written more than a few posts on the subject of free will in the past, and this is probably the pick of them. Leaving that aside for the moment, I don’t believe one can divorce free will from consciousness. Harari also provides a lengthy discussion on consciousness, where I found myself largely agreeing with him because he predominantly uses arguments that I’ve used myself. Basically, he argues that consciousness is an experience so subjective that we cannot objectively determine if someone else is conscious or not – it’s a condition we take on trust. He also argues that AI does not have to become conscious to become more intelligent than humans; a point that many people seem to overlook or just misconstrue. Despite what many people like to believe or think, science really can’t explain consciousness. At best it provides correlations between neuron activity in our brains and certain behaviours and ‘thoughts’.
Harari argues very cogently that science has all but proved the non-existence of free will and gives various examples like the famous experiments demonstrating that scientists can determine someone’s unconscious decision before the subject consciously decides. Or split brain experiments demonstrating that people who have had their corpus callosum surgically severed (the neural connection between the left and right hemispheres) behave as if they have 2 brains and 2 ‘selves’. But possibly the most disturbing are those experiments where scientists have turned rats literally into robots by implanting electrodes in their brains and then running a maze by remotely controlling them as if they were, in fact, robots and not animals.
Harari also makes the relevant point, overlooked by many, that true randomness, which lies at the heart of quantum mechanics, and seems to underpin all of reality, does not axiomatically provide free will. He argues that neuron activity in our brains, which gives us thoughts and intentions (which we call decisions), is a combination of reactions to emotions and drives (all driven by biochemical algorithms) and pure randomness. According to Harari, science has shown, at all levels, that free will is an illusion. If it is an illusion then it’s a very important one. Studies have shown that people who have been disavowed of their free will suffer psychologically. We know this from the mental health issues that people suffer when hope is severely curtailed in circumstances beyond their control. The fact is I don’t know of anyone who doesn’t want to believe that they are responsible for their own destiny within the limitations of their abilities and the rules of the society in which they live.
Harari makes the point himself, in a completely different section of the book, that given all behaviours, emotions and desires are algorithmically determined by bio-chemicals, then consciousness appears redundant. I’ve made the point before that there are organic entities that do respond biochemically to their environment without consciousness and we call them plants or vegetation. I’ve argued consistently that free will is an attribute of consciousness. Given the overall theme of Harari’s book, I would contend that AI will never have consciousness and therefore will never have free will.
In a not-so-recent post, I argued how beliefs drive science. Many have made the point that most people basically determine a belief heuristically or intuitively and then do their best to rationalise it. Even genius mathematicians (like John Nash) start with a hunch and then employ their copious abilities in logic and deduction to prove themselves right.
My belief in free will is fundamental to my existentialist philosophy and is grounded more on my experience than on arguments based in science or philosophy. I like to believe that the person I am today is a creation of my own making. I base this claim on the fact that I am a different person to the one who grew up in a troubled childhood. I am far from perfect yet I am a better person and, most importantly, someone who is far more comfortable in their own skin than I was with my younger self. The notion that I did this without ‘free will’ is one I find hard to construe.
Having said that, I’ve also made the point in previous posts that memory is essential to consciousness and a sense of self. I’ve suffered from temporary memory loss (TGA or transient global amnesia) so I know what it’s like to effectively lose one’s mind. It’s disorientating, even scary, and it demonstrates how tenuous our grip on reality can be. So I’m aware, better than most, that memory is the key to continuity.
Harari’s book is far more than a discussion on consciousness and free will. Like Lent’s The Patterning Instinct (reviewed here), he discusses the historical evolvement of culture and its relevance to how we see ourselves. But his emphasis is different to Lent’s and he talks about 20th Century politics in secular societies as effectively replacing religion. In fact, he defines religion (using examples) as what gives us meaning. He differentiates between spirituality and religion, arguing that there is a huge ‘gap’ between them. According to Harari, spirituality is about ‘the journey’, which reminds me of my approach to writing fiction, but what he means is that people who undertake ‘spiritual’ journeys are iconoclasts. I actually agree that religion is all about giving meaning to our lives, and I think that in secular societies, humanist liberalism has replaced religion in that role for many people, which is what Harari effectively argues over many pages.
Politically, he argues that in the 20th Century we had a number of experiments, including the 2 extremes of communism and fascism, both of which led to totalitarian dictatorships; as well as socialist and free market capitalism, which are effectively the left and right of democracies in Western countries. He explains how capitalism and debt go hand in hand to provide all the infrastructure and technological marvels we take for granted and why economic growth is the mantra of all politicians. He argues that knowledge growth is replacing population growth as the engine of economic growth whilst acknowledging that the planet won’t cope. Unlike Jeremy Lent, he doesn’t discuss the unlearned lessons of civilization collapse in the past - most famously, the Roman Empire.
I think that is most likely a topic for another post, so I will return to the thesis that religion gives us meaning. I believe I’ve spent my entire life searching for meaning and that I’ve found at least part of the answer in mathematics. I say ‘part’ because mathematics provides meaning for the Universe but not for me. In another post (discussing Eugene Wigner’s famous essay) I talked about the 2 miracles: that the Universe is comprehensible and that same Universe gave rise to an intelligence that could access that comprehensibility. The medium that allows both these miracles to occur is, of course, mathematics.
So, in some respects, virtually irrelevant to Harari’s tome, mathematics is my religion. As for meaning for myself, I think we all look for purpose, and purpose can be found in relationships, in projects and in just living. Curiously, Harari, towards the very end of his book, argues that ‘dataism’ will be the new religion, because data drives algorithms and encompasses everything from biological life forms to art forms like music. All digital data can be distilled into zeros and ones, but the mathematics of the Universe is not algorithmic, though others might disagree. In other words, I don’t believe we live inside a universe-size computer simulation.
The subtitle of Harari’s book is A Brief History of Tomorrow, and basically he argues that our lives will be run by AI algorithms that will be more clever than our biochemical algorithms. He contends that, contrary to expectations, the more specialist a job is the more likely it will be taken over by an algorithm. This does not only include obvious candidates like medical prognoses and stockmarket decisions (already happening) but corporate takeover decisions, in-the-field military decisions, board appointments and project planning decisions. Harari argues that there will be a huge class of people he calls the ‘useless class’, which would be most of us.
And this is where he argues that our liberal individualistic freedom ideals will become obsolete, because algorithms will understand us better than we do. This is premised on the idea that our biochemical algorithms, that unbeknownst to us, already control everything we do, will be overrun by AI algorithms in ways that we won’t be conscious of. He gives the example of Angelina Jolie opting to have a double mastectomy based, not on any symptoms she had, but on the 87% probability she would get breast cancer calculated by an algorithm that looked at her genetic data. Harari extrapolates this further by predicting that in the future we will all have biomedical monitoring to a Google-like database that will recommend all our medical decisions. What’s more the inequality gap will widen because wealthy people will be genetically enhanced ‘techno-humans’ and, whilst it will trickle down, the egalitarian liberalist ideal will vanish.
Most of us find this a scary scenario, yet Harari argues that it’s virtually inescapable based on the direction we are heading, whereby algorithms are already attempting to influence our decisions in voting, purchasing and lifestyle choices. He points out that Facebook has already demonstrated that it has enough information on its users to profile them better than their friends, and sometimes even their families and spouses. So this is Orwellian, only without the police state.
All in all, this is a brave new world, but I don’t think it’s inevitable. Reading his book, it’s all about agency. He argues that we will give up our autonomous agency to algorithms, only it will be a process by stealth, starting with the ‘smart’ agents we already have on our devices that are like personal assistants. I’ve actually explored this in my own fiction, whereby there is a symbiosis between humans and AI (refer below).
Life experiences are what inform us and, through a process of cumulative ordeals and achievements, create the persona we present to the world and ourselves. Future life experiences of future generations will no doubt include interactions with AI. As a Sci-Fi writer, I’ve attempted to imagine that at some level: portraying a super-intelligent-machine interface with a heroine space pioneer. In the same story I juxtaposed my heroine with an imaginary indigenous culture that was still very conscious of their place in the greater animal kingdom. My contention is that we are losing that perspective at our own peril. Harari alludes to this throughout his opus, but doesn’t really address it. I think our belief in our individualism with our own dreams and sense of purpose is essential to our psychological health, which is why I’m always horrified when I see oppression, whether it be political or marital or our treatment of refugees. I read Harari’s book as a warning, which aligns with his admission that it’s not prophecy.
Addendum: I haven't really expressed my own views on consciousness explicitly, because I've done that elsewhere, when I reviewed Douglas Hofstadter's iconoclastic and award-winning book, Godel Escher Bach.
And this is the case with Yuval Noah Harari’s Homo Deus, in which I found myself constantly arguing with him in the first 70+ pages of its 450+ page length. For a start, I disagree with his thesis (for want of a better term) that our universal pursuit of ‘happiness’ is purely a sensory-based experience, independent of the cause. From what I’ve observed, and experienced personally, the pursuit of sensory pleasure for its own sake leads to disillusionment at best and self-destruction at worst. A recent bio-pic I saw of Eric Clapton (Life in 12 Bars) illustrates this point rather dramatically. I won’t discuss his particular circumstances – just go and see the film; it’s a warts and all confessional.
If one goes as far back as Aristotle, he wrote an entire book on the subject of ‘eudaimonia’ – living a ‘good life’, effectively – under the title, Ethics. Eudaimonia is generally translated as ‘happiness’ but ‘fulfilment’ or ‘contentment’ may be a better translation, though even they can be contentious, if one reads various scholarly appraisals. I’ve argued in the past that the most frustrating endeavours can be the most rewarding – just ask anyone who has raised children. Generally, I find that the more effort one exerts during a process of endeavour, the better the emotional reward in the end. Reward without sacrifice is not much of a reward. Ask anyone who’s won a sporting grand final, or, for that matter, written a novel.
This is a book that will challenge most people’s beliefs somewhere within its pages, and for that reason alone, it’s worth reading. In fact, many people will find it depressing, because a recurring theme or subtext of the book is that in the future humans will become virtually redundant. Redundant may be too strong a word, but leaving aside the obvious possibility that future jobs currently performed by humans may be taken over by AI, Harari claims that our very notion of ‘free will’ and our almost ‘religious’ belief in the sanctity of individualism will become obsolete ideals. He addresses this towards the end of the book, so I’ll do the same. It’s a thick tome with a lot of ideas well presented, so I will concentrate on those that I feel most compelled to address or challenge.
Like my recent review of Jeremy Lent’s The Patterning Instinct, there is a lot that I agree upon in Homo Deus, and I’m the first to admit that many of Harari’s arguments unnerved me because they challenge some of my deeply held beliefs. Given the self-ascribed aphorism that heads my blog, this makes his book a worthy opus for discussion.
Fundamentally, Harari argues that we are really nothing more than biochemical algorithms and he provides very compelling arguments to justify this. Plus he devotes an entire chapter deconstructing the widely held and cherished notion that we have free will. I’ve written more than a few posts on the subject of free will in the past, and this is probably the pick of them. Leaving that aside for the moment, I don’t believe one can divorce free will from consciousness. Harari also provides a lengthy discussion on consciousness, where I found myself largely agreeing with him because he predominantly uses arguments that I’ve used myself. Basically, he argues that consciousness is an experience so subjective that we cannot objectively determine if someone else is conscious or not – it’s a condition we take on trust. He also argues that AI does not have to become conscious to become more intelligent than humans; a point that many people seem to overlook or just misconstrue. Despite what many people like to believe or think, science really can’t explain consciousness. At best it provides correlations between neuron activity in our brains and certain behaviours and ‘thoughts’.
Harari argues very cogently that science has all but proved the non-existence of free will and gives various examples like the famous experiments demonstrating that scientists can determine someone’s unconscious decision before the subject consciously decides. Or split brain experiments demonstrating that people who have had their corpus callosum surgically severed (the neural connection between the left and right hemispheres) behave as if they have 2 brains and 2 ‘selves’. But possibly the most disturbing are those experiments where scientists have turned rats literally into robots by implanting electrodes in their brains and then running a maze by remotely controlling them as if they were, in fact, robots and not animals.
Harari also makes the relevant point, overlooked by many, that true randomness, which lies at the heart of quantum mechanics, and seems to underpin all of reality, does not axiomatically provide free will. He argues that neuron activity in our brains, which gives us thoughts and intentions (which we call decisions), is a combination of reactions to emotions and drives (all driven by biochemical algorithms) and pure randomness. According to Harari, science has shown, at all levels, that free will is an illusion. If it is an illusion then it’s a very important one. Studies have shown that people who have been disavowed of their free will suffer psychologically. We know this from the mental health issues that people suffer when hope is severely curtailed in circumstances beyond their control. The fact is I don’t know of anyone who doesn’t want to believe that they are responsible for their own destiny within the limitations of their abilities and the rules of the society in which they live.
Harari makes the point himself, in a completely different section of the book, that given all behaviours, emotions and desires are algorithmically determined by bio-chemicals, then consciousness appears redundant. I’ve made the point before that there are organic entities that do respond biochemically to their environment without consciousness and we call them plants or vegetation. I’ve argued consistently that free will is an attribute of consciousness. Given the overall theme of Harari’s book, I would contend that AI will never have consciousness and therefore will never have free will.
In a not-so-recent post, I argued how beliefs drive science. Many have made the point that most people basically determine a belief heuristically or intuitively and then do their best to rationalise it. Even genius mathematicians (like John Nash) start with a hunch and then employ their copious abilities in logic and deduction to prove themselves right.
My belief in free will is fundamental to my existentialist philosophy and is grounded more on my experience than on arguments based in science or philosophy. I like to believe that the person I am today is a creation of my own making. I base this claim on the fact that I am a different person to the one who grew up in a troubled childhood. I am far from perfect yet I am a better person and, most importantly, someone who is far more comfortable in their own skin than I was with my younger self. The notion that I did this without ‘free will’ is one I find hard to construe.
Having said that, I’ve also made the point in previous posts that memory is essential to consciousness and a sense of self. I’ve suffered from temporary memory loss (TGA or transient global amnesia) so I know what it’s like to effectively lose one’s mind. It’s disorientating, even scary, and it demonstrates how tenuous our grip on reality can be. So I’m aware, better than most, that memory is the key to continuity.
Harari’s book is far more than a discussion on consciousness and free will. Like Lent’s The Patterning Instinct (reviewed here), he discusses the historical evolvement of culture and its relevance to how we see ourselves. But his emphasis is different to Lent’s and he talks about 20th Century politics in secular societies as effectively replacing religion. In fact, he defines religion (using examples) as what gives us meaning. He differentiates between spirituality and religion, arguing that there is a huge ‘gap’ between them. According to Harari, spirituality is about ‘the journey’, which reminds me of my approach to writing fiction, but what he means is that people who undertake ‘spiritual’ journeys are iconoclasts. I actually agree that religion is all about giving meaning to our lives, and I think that in secular societies, humanist liberalism has replaced religion in that role for many people, which is what Harari effectively argues over many pages.
Politically, he argues that in the 20th Century we had a number of experiments, including the 2 extremes of communism and fascism, both of which led to totalitarian dictatorships; as well as socialist and free market capitalism, which are effectively the left and right of democracies in Western countries. He explains how capitalism and debt go hand in hand to provide all the infrastructure and technological marvels we take for granted and why economic growth is the mantra of all politicians. He argues that knowledge growth is replacing population growth as the engine of economic growth whilst acknowledging that the planet won’t cope. Unlike Jeremy Lent, he doesn’t discuss the unlearned lessons of civilization collapse in the past - most famously, the Roman Empire.
I think that is most likely a topic for another post, so I will return to the thesis that religion gives us meaning. I believe I’ve spent my entire life searching for meaning and that I’ve found at least part of the answer in mathematics. I say ‘part’ because mathematics provides meaning for the Universe but not for me. In another post (discussing Eugene Wigner’s famous essay) I talked about the 2 miracles: that the Universe is comprehensible and that same Universe gave rise to an intelligence that could access that comprehensibility. The medium that allows both these miracles to occur is, of course, mathematics.
So, in some respects, virtually irrelevant to Harari’s tome, mathematics is my religion. As for meaning for myself, I think we all look for purpose, and purpose can be found in relationships, in projects and in just living. Curiously, Harari, towards the very end of his book, argues that ‘dataism’ will be the new religion, because data drives algorithms and encompasses everything from biological life forms to art forms like music. All digital data can be distilled into zeros and ones, but the mathematics of the Universe is not algorithmic, though others might disagree. In other words, I don’t believe we live inside a universe-size computer simulation.
The subtitle of Harari’s book is A Brief History of Tomorrow, and basically he argues that our lives will be run by AI algorithms that will be more clever than our biochemical algorithms. He contends that, contrary to expectations, the more specialist a job is the more likely it will be taken over by an algorithm. This does not only include obvious candidates like medical prognoses and stockmarket decisions (already happening) but corporate takeover decisions, in-the-field military decisions, board appointments and project planning decisions. Harari argues that there will be a huge class of people he calls the ‘useless class’, which would be most of us.
And this is where he argues that our liberal individualistic freedom ideals will become obsolete, because algorithms will understand us better than we do. This is premised on the idea that our biochemical algorithms, that unbeknownst to us, already control everything we do, will be overrun by AI algorithms in ways that we won’t be conscious of. He gives the example of Angelina Jolie opting to have a double mastectomy based, not on any symptoms she had, but on the 87% probability she would get breast cancer calculated by an algorithm that looked at her genetic data. Harari extrapolates this further by predicting that in the future we will all have biomedical monitoring to a Google-like database that will recommend all our medical decisions. What’s more the inequality gap will widen because wealthy people will be genetically enhanced ‘techno-humans’ and, whilst it will trickle down, the egalitarian liberalist ideal will vanish.
Most of us find this a scary scenario, yet Harari argues that it’s virtually inescapable based on the direction we are heading, whereby algorithms are already attempting to influence our decisions in voting, purchasing and lifestyle choices. He points out that Facebook has already demonstrated that it has enough information on its users to profile them better than their friends, and sometimes even their families and spouses. So this is Orwellian, only without the police state.
All in all, this is a brave new world, but I don’t think it’s inevitable. Reading his book, it’s all about agency. He argues that we will give up our autonomous agency to algorithms, only it will be a process by stealth, starting with the ‘smart’ agents we already have on our devices that are like personal assistants. I’ve actually explored this in my own fiction, whereby there is a symbiosis between humans and AI (refer below).
Life experiences are what inform us and, through a process of cumulative ordeals and achievements, create the persona we present to the world and ourselves. Future life experiences of future generations will no doubt include interactions with AI. As a Sci-Fi writer, I’ve attempted to imagine that at some level: portraying a super-intelligent-machine interface with a heroine space pioneer. In the same story I juxtaposed my heroine with an imaginary indigenous culture that was still very conscious of their place in the greater animal kingdom. My contention is that we are losing that perspective at our own peril. Harari alludes to this throughout his opus, but doesn’t really address it. I think our belief in our individualism with our own dreams and sense of purpose is essential to our psychological health, which is why I’m always horrified when I see oppression, whether it be political or marital or our treatment of refugees. I read Harari’s book as a warning, which aligns with his admission that it’s not prophecy.
Addendum: I haven't really expressed my own views on consciousness explicitly, because I've done that elsewhere, when I reviewed Douglas Hofstadter's iconoclastic and award-winning book, Godel Escher Bach.
Subscribe to:
Posts (Atom)